// HALBORN

Liquid Loans -
Protocol

Smart Contract Security
Assessment

Prepared by: Halborn
Date of Engagement: June 20th, 2023 - July 12th, 2023

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 4

CONTACTS 5
1 EXECUTIVE OVERVIEW 6
1.7 INTRODUCTION 7
1.2 ASSESSMENT SUMMARY 7
1.3 TEST APPROACH & METHODOLOGY 8
2 RISK METHODOLOGY 9
2.1 EXPLOITABILITY 10
2.2 IMPACT 11
2.3 SEVERITY COEFFICIENT 13
2.4 SCOPE 15
3 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 16
4 FINDINGS & TECH DETAILS 17

4.1 (HAL-01) FETCHCALLER IS PRONE TO PRICE MANIPULATION ATTACKS -

LOW(2.2) 19
Description 19
Code Location 20
Proof Of Concept 20
BVSS 21
Recommendation 21
Reference 21
Remediation Plan 21
4.2 (HAL-02) PRICEFEED CAN RETURN STALE PRICES - LOW(4.1) 22

Description 22

4.3

4.4

)

5.1

Code Location 22

BVSS 29
Recommendation 29
Remediation Plan 29

(HAL-03) PRICEFEED ADDRESSES CANNOT BE CHANGED - LOW(2.0) 30

Code Location 30
BVSS 31
Recommendation 31
Remediation Plan 31
(HAL-04) HARDCODED ARRAY LENGTH - INFORMATIONAL(1.4) 32
Description 32
Code Location 32
BVSS 32
Recommendation 32
Remediation Plan 33
(HAL-05) APPROVE RESTRICTION CAN BE BYPASSED - INFORMA-
TIONAL(1.4) 34
Description 34
Code Location 34
BVSS 35
Recommendation 35
Remediation Plan 35
AUTOMATED TESTING 36
STATIC ANALYSIS REPORT 37

Description 37

Results
5.2 AUTOMATED SECURITY SCAN

Description

Results

37

51

51

51

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR
0.1 Document Creation 07/09/2023 Manuel Garcia
0.2 Document Updates 07/11/2023 Manuel Garcia
0.3 Final Draft 07/12/2023 Manuel Garcia
0.4 Draft Review 07/12/2023 Piotr Cielas
0.5 Draft Review 07/12/2023 Gabi Urrutia
1.0 Remediation Plan 07/28/2023 Manuel Garcia
1.1 Remediation Plan Review | 07/28/2023 Piotr Cielas
1.2 Remediation Plan Review | 07/31/2023 Gabi Urrutia
1.3 Remediation Plan 08/21/2023 Manuel Garcia

Updates
1.4 Remediation Plan 08/21/2023 Piotr Cielas
Updates Review
1.5 Remediation Plan 08/21/2023 Gabi Urrutia
Updates Review
1.6 Remediation Plan 08/29/2023 Manuel Garcia
Updates
1.7 Remediation Plan 08/29/2023 Piotr Cielas
Updates Review
1.8 Remediation Plan 08/29/2023 Gabi Urrutia

Updates Review

CONTACTS

CONTACT COMPANY EMAIL
Rob Behnke Halborn Rob.Behnke@halborn.com
Steven Walbroehl Halborn Steven.Walbroehl@halborn.com
Gabi Urrutia Halborn Gabi.Urrutia@halborn.com
Piotr Cielas Halborn Piotr.Cielas@halborn.com
Manuel Garcia Halborn Manuel.Diaz@halborn.com

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com
mailto:Manuel.Diaz@halborn.com

EXECUTIVE OVERVIEW

EXECUTIVE OVERVIEW

1.7 INTRODUCTION

Liquid Loans engaged Halborn to conduct a security assessment on their
smart contracts beginning on June 20th, 2023 and ending on July 12th,
2023.

The Liquid Loans protocol is a decentralized borrowing protocol that
allows users to draw 0% interest loans against native currency used as
collateral. It is based on a fork of the Liquity protocol that is meant
to run on PulseChain.

This security assessment was scoped to some smart contracts in the Liquid-
Loans-0Official/monorepo GitHub repository. The code in this repository is
a fork of the Liquity protocol, per client request, only a pre-defined set
of contracts involving changes in the original protocol were verified.
Any code that is out of these contracts is left out of scope. More
information can be found in the Scope section of this report.

1.2 ASSESSMENT SUMMARY

Halborn was provided 3 weeks for the engagement and assigned a team of one
full-time security engineer to verify the security of the smart contracts
in scope. The security team consists of a blockchain and smart contract
security expert with advanced penetration testing and smart contract
hacking skills, and deep knowledge of multiple blockchain protocols.

The purpose of the assessments is to:

®* Identify potential security issues within the smart contracts.
®* Ensure that smart contract functionality operates as intended.

In summary, Halborn identified some security risks that were mostly
addressed by Liquid Loans. The main one was the following:

®* Fetchcaller now returns the last price returned by the oracle with

https://github.com/Liquid-Loans-Official/monorepo/tree/audit
https://github.com/Liquid-Loans-Official/monorepo/tree/audit

EXECUTIVE OVERVIEW

at least a 15-minute delay.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing
to balance efficiency, timeliness, practicality, and accuracy in regard
to the scope of this assessment. While manual testing is recommended to
uncover flaws in logic, process, and implementation; automated testing
techniques help enhance coverage of the code and can quickly identify
items that do not follow the security best practices. The following
phases and associated tools were used during the assessment:

®* Research into architecture and purpose.

®* Smart contract manual code review and walkthrough.

Graphing out functionality and contract logic/connectivity/functions
(solgraph).

® Manual assessment of use and safety for the critical Solidity vari-
ables and functions in scope to identify any arithmetic related
vulnerability classes.

Manual testing by custom scripts.

®* Scanning of solidity files for vulnerabilities, security hot-spots
or bugs (MythX).

Static Analysis of security for scoped contract, and imported func-
tions (Slither).

®* Testnet deployment (Foundry, Brownie).

EXECUTIVE OVERVIEW

2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two
sets of Metrics and a Severity Coefficient. This system is inspired by
the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability
captures the ease and technical means by which vulnerabilities can be
exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of
the ranking with two factors: Reversibility and Scope. These capture the
impact of the vulnerability on the environment as well as the number of
users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and
10 corresponding to the highest security risk. This provides an objective
and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-
nerabilities based on their level of risk to address the most critical
issues in a timely manner.

EXECUTIVE OVERVIEW

2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker
relative to sending a single transaction on the relevant blockchain.
Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in
order to exploit the vulnerability. Includes but is not limited to macro
situation, available third-party liquidity and regulatory challenges.

Metrics:
Exploitability Metric . :
Metric Value Numerical Value
(mg)
L Arbitrary (AO:A) 1
Attack Origin (AO) o
Specific (AO:S) 0.2
Low (AC:L) 1
Attack Cost (AC) Medium (AC:M) 0.67
High (AC:H) 0.33
Low (AX:L) 1
Attack Complexity (AX) Medium (AX:M) 0.67
High (AX:H) 0.33

Exploitability /£ is calculated using the following formula:

E = n Me

10

EXECUTIVE OVERVIEW

2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources
managed by the contract due to a successfully exploited vulnerability.
Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-
ity. Integrity refers to the trustworthiness and veracity of data stored
and/or processed on-chain. Integrity impact directly affecting Deposit
or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-
sulting from a successfully exploited vulnerability. This metric refers
to smart contract features and functionality, not state. Availability
impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either
users or owners.

11

EXECUTIVE OVERVIEW

Metrics:

Impact Metric

Metric Value

Numerical Value

(mp)

None (I:N) 0
Low (I:L) 0.25
Confidentiality (C) Medium (I:M) 0.5
High (I:H) 0.75

Critical (I:C) 1

None (I:N) 0
Low (I:L) 0.25
Integrity (I) Medium (I:M) 0.5
High (I:H) .75

Critical (I:C) 1

None (A:N) 0
Low (A:L) 0.25
Availability (A) Medium (A:M) 0.5
High (A:H) 0.75

Critical 1

None (D:N) 0
Low (D:L) 0.25
Deposit (D) Medium (D:M) 0.5
High (D:H) 0.75

Critical (D:C) 1

None (Y:N) 0
Low (Y:L) 0.25
Yield (Y) Medium: (Y:M) 0.5
High: (Y:H) 0.75

Critical (Y:H)

Impact / is calculated using the following formula:

I = max(my) +

> my; — max(my)

4

2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be
reversed. For upgradeable contracts, assume the contract private key is
available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-
sources in other contracts.

EXECUTIVE OVERVIEW

Coefficient _ :
©) Coefficient Value Numerical Value
None (R:N) 1
Reversibility (r) Partial (R:P) 0.5
Full (R:F) 0.25
Changed (S:C) 1.25

Scope (s)

Unchanged (S:U)

Severity Coefficient (' is obtained by the following product:

C=rs

13

EXECUTIVE OVERVIEW

The Vulnerability Severity Score S is obtained by:

S = min(10, EIC = 10)

The score is rounded up to 1 decimal places.

Severity Score Value Range
Critical 9 -10
High 7 -8.9
4.5 - 6.9
2 - 4.4
0 -1.9

14

EXECUTIVE OVERVIEW

2.4 SCOPE

Code repositories:

1. Liquid Loans Monorepo

Repository: Liquid-Loans-Official/monorepo
® Commit ID: 7c3c@d5aa4ec0b78863882443¢c998dfa47388772
®* Smart contracts in scope:

. CommunityPoints.sol

LockupContract.sol

LockupContractCreator.sol

LockupContractFactory.sol

LockupSacrifice.sol

PriceFeed.sol

FetchCaller.sol

UsingFetch.sol

StabilityPool.sol (_computeRewardsPerUnitStaked() function)

O 00 N O U1 b W N =

Out-of-scope

®* Third-party libraries and dependencies.
®* Economic attacks.

15

https://github.com/Liquid-Loans-Official/monorepo/tree/audit
https://github.com/Liquid-Loans-Official/monorepo/tree/7c3c0d5aa4ec0b78863882443c998dfa47388772

EXECUTIVE OVERVIEW

3. ASSESSMENT SUMMARY & FINDINGS

OVERVIEW

CRITICAL

HIGH

0

16

EXECUTIVE OVERVIEW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-@1) FETCHCALLER IS PRONE TO

PRICE MANIPULATION ATTACKS RISK ACCEPTED

(HAL-02) PRICEFEED CAN RETURN STALE

PRICES RISK ACCEPTED

(HAL-03) PRICEFEED ADDRESSES CANNOT
BE CHANGED

(HAL-04) HARDCODED ARRAY LENGTH

(HAL-05) APPROVE RESTRICTION CAN BE

BYPASSED ACKNOWLEDGED

17

FINDINGS & TECH
DETAILS

FINDINGS & TECH DETAILS

4.1 (HAL-01) FETCHCALLER IS PRONE
TO PRICE MANIPULATION ATTACKS - LOW
(2.2)

Description:

The FetchCaller contract is used by the PriceFeed contract to retrieve
prices from the fetch oracle in the Pulse chain.

The fetch oracle is a decentralized oracle that allows anyone to introduce
new data into the oracle by providing funds as collateral. If the data
is later on disputed and determined to be false, the data is removed from
the oracle and the user loses the funds used as collateral for the data.

For this reason, when retrieving prices with the getFetchCurrentValue()
function, a 15-minute delay is added, so only prices that have been in
the oracle for at least 15 minutes are allowed.

However, once a price is retrieved, the FetchCaller contract saves it
as lastStoredPrice and lastStoredTimestamp. If some price is retrieved
later with a timestamp earlier than the stored one, the previous price
is returned as it is considered the most recent price.

However, this behavior is prone to price manipulation attacks, as a user
can introduce a malicious price, and if not disputed for at least 15
minutes they can call the getFetchCurrentValue which saves this price as
the last stored price.

If the malicious price is later on disputed and removed from the oracle and
a replacement for the previous price is provided, the getFetchCurrentValue
still returns this malicious price as its timestamp is more recent than

the previous one reported by the Fetch oracle.

This is partially mitigated by the fact that the previous price is also
checked for a price variation of 50%. Limiting the impact of the price
manipulation to a manipulation of a 50% in value.

19

FINDINGS & TECH DETAILS

Code Location:

41
42
43
44
45
46
L
47
48
49
50
51
52
53
L
54
55
56
57
58
59
60
61

function getFetchCurrentValue(
bytes32 _queryId

external

override

returns (bool ifRetrieve, uint256 value, uint256
_timestampRetrieved)

{
(bytes memory data, uint256 timestamp) = getDataBefore(
_querylId,
block.timestamp - 15 minutes
)3
uint256 _value = abi.decode(data, (uint256));
if (timestamp == || _value == @) return (false, _value,
timestamp);
if (timestamp > lastStoredTimestamp) {
lastStoredTimestamp = timestamp;
lastStoredPrice = _value;
return (true, _value, timestamp);
} else {
return (true, lastStoredPrice, lastStoredTimestamp);
}
}

Proof Of Concept:

The attacker introduces a malicious price into the oracle.

After 15 minutes, calls getFetchCurrentValue and this price is
stored.

The price is disputed and removed from the oracle.

The malicious price is still returned by the getFetchCurrentValue()
function.

20

FINDINGS & TECH DETAILS

[FATL. Reason: Assertion failed.] testFail PriceFeed PriceCache() (gas: 12572)
Logs:

Calling getFetchCurrentValue():

Value: 374712420912

Timestamp: 201

Removing price from the oracle.

Calling getFetchCurrentValue():

Value: 374712420912

Timestamp: 201

Same value was returned.

Test result: FATLED. 0 passed; 1 failed; 0 skipped; finished in 527.46us

Failing tests:
Encountered 1 failing test in test/PriceFeed.t.sol:PriceFeedTest
[FATL. Reason: Assertion failed.] testFail PriceFeed PriceCache() (gas: 12572)

BVSS:

AO:A/AC:M/AX:H/C:N/I:C/A:N/D:N/Y:N/R:N/S:U (2.2)

Recommendation:

If the lastStoredTimestamp is greater than the last retrieved timestamp,
consider using the price from the secondary oracle.

Reference:

Fetch Oracle Whitepaper

Remediation Plan:

RISK ACCEPTED: Addressing this concern would allow users to challenge
the most recent price and revert to a previously more favorable price.
Considering this, the Liquid Loans team decided to take the associated
risk by implementing off-chain security mechanisms, effectively setting

up automated systems for resolving price disputes.

21

https://fetch-site.s3.eu-central-1.amazonaws.com/Fetch+Oracle+Whitepaper.pdf

FINDINGS & TECH DETAILS

4.2 (HAL-02) PRICEFEED CAN RETURN
STALE PRICES - LOW (4.1)

Description:

The fetchPrice() function from the PriceFeed contract allows the Liquid
Loan protocol to fetch the price from the fetch oracle on PulseChain.
This function uses Fetch as a main oracle and a fallback oracle in case
Fetch fails. If both fail, the last good price seen by LiquidLoans is
used.

In the extreme case of both oracles failing, the last price seen by Liquid
Loans is returned. This means that if both oracles fail, a stale price
might be returned. This might not be ideal in the case of extreme price
fluctuations, returning stale prices and lead could lead to arbitrage
opportunities that may impact users’ deposits. 1In such cases of price
fluctuations, reverting the transaction might be a better option than
returning stale prices, as an impact in availability is considered less
severe than an impact on deposits.

Code Location:

Listing 2: src/PriceFeed.sol (Line 401)

218 function fetchPrice() external override returns (uint) {
PARS) //Get current and previous price data from Fetch and current

L, price data from SecondaryOracle

220 FetchResponse memory fetchResponse = _getCurrentFetchResponse
L O
221 FetchResponse memory prevFetchResponse =

L, _getPreviousFetchResponse (

222 fetchResponse.timestamp

223)

224 SecondaryOracleResponse

225 memory secondaryResponse = _getCurrentSecondaryResponse();
226

227 //--- CASE 1: System fetched last price from Fetch ---

228 if (status == Status.fetchWorking) {

22

FINDINGS & TECH DETAILS

229
230
231

L
232
233
234
235
236
237

N
238
239
240

241
242
243
244

Ly
245
246
247
248
249
250
251

Ly
252
253

254
255
256
257

L
258
259
260
261
262
263
264
265

//1f Fetch is broken, try SecondaryOracle
if (_fetchIsBroken(fetchResponse)) {

//I1f SecondaryOracle is broken then both oracles are

untrusted, so return the last good price

if (_secondaryIsBroken(secondaryResponse)) {
_changeStatus(Status.bothOraclesUntrusted);
return lastGoodPrice;

3

/*

* If SecondaryOracle is only frozen but otherwise

returning valid data, return the last good price.

*/
if (_secondaryIsFrozen(secondaryResponse)) {

_changeStatus(Status.usingSecondaryFetchUntrusted)

return lastGoodPrice;

//1f Fetch is broken and SecondaryOracle is working,

switch to SecondaryOracle and return current SecondaryOracle price

_changeStatus(Status.usingSecondaryFetchUntrusted);
return _storeSecondaryPrice(secondaryResponse);

//1f Fetch is frozen, try SecondaryOracle
if (_fetchIsFrozen(fetchResponse)) {

//I1f SecondaryOracle is broken too, remember

SecondaryOracle broke, and return last good price

Fetch froze,

if (_secondaryIsBroken(secondaryResponse)) {
_changeStatus(Status.usingFetchSecondaryUntrusted)

return lastGoodPrice;
//1f SecondaryOracle is frozen or working, remember
and switch to SecondaryOracle
_changeStatus(Status.usingSecondaryFetchFrozen);
if (_secondaryIsFrozen(secondaryResponse)) {

return lastGoodPrice;

//1f SecondaryOracle is working, use it
return _storeSecondaryPrice(secondaryResponse);

23

266 }
267
268 //1f Fetch price has changed by > 50% between two
L, consecutive rounds, compare it to SecondaryOracle's price
269 if (_fetchPriceChangeAboveMax (fetchResponse,
L, prevFetchResponse)) {
270 //1f SecondaryOracle is broken, both oracles are

L, untrusted, and return last good price

271 if (_secondaryIsBroken(secondaryResponse)) {

272 _changeStatus(Status.bothOraclesUntrusted);

273 return lastGoodPrice;

274 3}

275

276 //1f SecondaryOracle is frozen, switch to
L, SecondaryOracle and return last good price

277 if (_secondaryIsFrozen(secondaryResponse)) {

278 _changeStatus(Status.usingSecondaryFetchUntrusted)
L

279 return lastGoodPrice;

280 3

281

282 /*

283 * If SecondaryOracle is live and both oracles have a

L, similar price, conclude that Fetch's large price deviation between
284 * two consecutive rounds was likely a legitmate

L, market price movement, and so continue using Fetch
285 */

286 if (

287 _bothOraclesSimilarPrice(fetchResponse,
L, secondaryResponse)

288) |

289 return _storeFetchPrice(fetchResponse);

290 3

291

292 //1f SecondaryOracle is live but the oracles differ
L, too much in price, conclude that Fetch's initial price deviation
L, was

293 //an oracle failure. Switch to SecondaryOracle, and

L, use SecondaryOracle price

294

295 _changeStatus(Status.usingSecondaryFetchUntrusted);
296 return _storeSecondaryPrice(secondaryResponse);

297 }

298

FINDINGS & TECH DETAILS

FINDINGS & TECH DETAILS

299

300
301
302
303
304

305
306
307
308

309
310

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

L
328
329
330
331
332
333
334
335
336
337

//1f Fetch is working and SecondaryOracle is broken,
remember SecondaryOracle is broken
if (_secondaryIsBroken(secondaryResponse)) {
_changeStatus(Status.usingFetchSecondaryUntrusted);

//1f Fetch is working, return Fetch current price (no
status change)
return _storeFetchPrice(fetchResponse);

//--- CASE 2: The system fetched last price from
SecondaryOracle ---
if (status == Status.usingSecondaryFetchUntrusted) {
//If both SecondaryOracle and Fetch are live, unbroken,
and reporting similar prices, switch back to Fetch

if (
_bothOraclesLiveAndUnbrokenAndSimilarPrice (
fetchResponse,
secondaryResponse
)
) {

_changeStatus(Status.fetchWorking);
return _storeFetchPrice(fetchResponse);

if (_secondaryIsBroken(secondaryResponse)) {
_changeStatus(Status.bothOraclesUntrusted);
return lastGoodPrice;

/*
* If SecondaryOracle is only frozen but otherwise
returning valid data, just return the last good price.
*/
if (_secondaryIsFrozen(secondaryResponse)) {
return lastGoodPrice;

//0therwise, use SecondaryOracle price
return _storeSecondaryPrice(secondaryResponse);

//--- CASE 3: Both oracles were untrusted at the last price

25

FINDINGS & TECH DETAILS

L,
338
339
340

Ly
341
342
343
344
345
346
347
348
349
350
351
352
353

L
354
355
356
357
358
359
360
361
362
363
364
365
366

L
367
368
369
370
371
372
373

Ls
374
375
376

fetch ---
if (status == Status.bothOraclesUntrusted) {
VES
* If both oracles are now live, unbroken and similar
price, we assume that they are reporting
* accurately, and so we switch back to Fetch.

*/
if (
_bothOraclesLiveAndUnbrokenAndSimilarPrice (
fetchResponse,
secondaryResponse
)
) {

_changeStatus(Status.fetchWorking);
return _storeFetchPrice(fetchResponse);

//0therwise, return the last good price - both oracles are

still untrusted (no status change)
return lastGoodPrice;

3
//--- CASE 4: Using SecondaryOracle, and Fetch is frozen ---
if (status == Status.usingSecondaryFetchFrozen) {

if (_fetchIsBroken(fetchResponse)) {
//1f both Oracles are broken, return last good price
if (_secondaryIsBroken(secondaryResponse)) {
_changeStatus(Status.bothOraclesUntrusted);
return lastGoodPrice;

//1f Fetch is broken, remember it and switch to using
SecondaryOracle
_changeStatus(Status.usingSecondaryFetchUntrusted);

if (_secondaryIsFrozen(secondaryResponse)) {
return lastGoodPrice;

//1f SecondaryOracle is working, return
SecondaryOracle current price
return _storeSecondaryPrice(secondaryResponse);

26

FINDINGS & TECH DETAILS

377 if (_fetchIsFrozen(fetchResponse)) {

378 //if Fetch is frozen and SecondaryOracle is broken,
L, remember SecondaryOracle broke, and return last good price

379 if (_secondaryIsBroken(secondaryResponse)) {

380 _changeStatus(Status.usingFetchSecondaryUntrusted)
L

381 return lastGoodPrice;

382 3}

383

384 //1f both are frozen, just use lastGoodPrice

385 if (_secondaryIsFrozen(secondaryResponse)) {

386 return lastGoodPrice;

387 3}

388

389 //if Fetch is frozen and SecondaryOracle is working,
L, keep using SecondaryOracle (no status change)

390 return _storeSecondaryPrice(secondaryResponse);

391 }

392

393 //if Fetch is live and SecondaryOracle is broken, remember
L, SecondaryOracle broke, and return Fetch price

394 if (_secondaryIsBroken(secondaryResponse)) {

395 _changeStatus(Status.usingFetchSecondaryUntrusted);

396 return _storeFetchPrice(fetchResponse);

397 }

398

399 //1f Fetch is live and SecondaryOracle is frozen, just use

L, last good price (no status change) since we have no basis for

L, comparison

400 if (_secondaryIsFrozen(secondaryResponse)) {

401 return lastGoodPrice;

402 }

403

404 //1f Fetch is live and SecondaryOracle is working, compare
L, prices. Switch to Fetch

405 //if prices are within 5%, and return Fetch price.

406 if (_bothOraclesSimilarPrice(fetchResponse,
L, secondaryResponse)) {

407 _changeStatus(Status. fetchWorking);

408 return _storeFetchPrice(fetchResponse);

409 }

410

411 //0therwise if Fetch is live but price not within 5% of

L, SecondaryOracle,

distrust Fetch, and return SecondaryOracle price

27

FINDINGS & TECH DETAILS

412
413
414
415
416
417
418
419
420
421
422
423
424

425
426
427
428
429

Ly
430
431
432
433
434
435
436
437
438
439
440

L
441
442

443
444
445
446
447

L
448
449
450

_changeStatus(Status.usingSecondaryFetchUntrusted);
return _storeSecondaryPrice(secondaryResponse);

//--- CASE 5: Using Fetch, SecondaryOracle is untrusted ---
if (status == Status.usingFetchSecondaryUntrusted) {
//1f Fetch breaks, now both oracles are untrusted
if (_fetchIsBroken(fetchResponse)) {
_changeStatus(Status.bothOraclesUntrusted);
return lastGoodPrice;

//1f Fetch is frozen, return last good price (no status
change)
if (_fetchIsFrozen(fetchResponse)) {
return lastGoodPrice;

//1f Fetch and SecondaryOracle are both live, unbroken and
similar price, switch back to fetchWorking and return Fetch price

if (
_bothOraclesLiveAndUnbrokenAndSimilarPrice (
fetchResponse,
secondaryResponse

) {
_changeStatus(Status. fetchWorking);
return _storeFetchPrice(fetchResponse);

//1f Fetch is live but deviated >50% from it's previous
price and SecondaryOracle is still untrusted, switch
//to bothOraclesUntrusted and return last good price
if (_fetchPriceChangeAboveMax (fetchResponse,
prevFetchResponse)) {
_changeStatus(Status.bothOraclesUntrusted);
return lastGoodPrice;

//0therwise if Fetch is live and deviated <50% from it's
previous price and SecondaryOracle is still untrusted,

//return Fetch price (no status change)

return _storeFetchPrice(fetchResponse);

28

FINDINGS & TECH DETAILS

BVSS:

AO:A/AC:L/AX:H/C:N/I:N/A:N/D:C/Y:C/R:N/S:U (4.1)

Recommendation:

Consider reverting instead of returning the last stored price in case
both oracles fail.

Remediation Plan:

RISK ACCEPTED: The Liquid Loans team accepted the risk of this finding, as
reverting the process would lead to the suspension of all user operations
reliant on the current price, including Vault activities, liquidations,
redemptions, and more. However, in the existing setup, users still retain
the ability to at least close their positions or redeem their USDL in the
event of a failure in either oracle.

Additionally, there is a valid concern that altering the logic to enable
reversion and consequently locking down the entire protocol might intro-
duce the possibility of a permanent disruption, rendering the protocol
inoperable indefinitely.

Hence, considering the underlying design rationale and the associated risk
inherent in altering this aspect of the protocol, the Liquid Loans team
opted to maintain the current logic unchanged.

29

FINDINGS & TECH DETAILS

4.3 (HAL-03) PRICEFEED ADDRESSES
CANNOT BE CHANGED - LOW (2.0)

In the PriceFeed contract, the owner has to set the oracle address in
the setAddresses() function. This function can only be called once by
the contract deployer, as at the end of the function the ownership is
renounced and the contract is left without an owner.

In this function, the fetch oracle address is checked to ensure that the
address is valid, and the oracle is working. However, the fallback oracle
is not being checked, meaning if the owner of the contract mistakenly
sets a wrong fallback oracle address the address is accepted as it is not
checked, and the owner cannot change it after the address is set.

Code Location:

89 function setAddresses/(

90 address _fetchCallerAddress,

91 address _secondaryOracleAddress

92) external onlyOwner {

93 checkContract(_fetchCallerAddress);

94 checkContract(_secondaryOracleAddress);

95

96 fetchCaller = IFetchCaller(_fetchCallerAddress);

97 secondaryOracle = ISecondaryOracle(_secondaryOracleAddress);
98

99 //Explicitly set initial system status
100 status = Status.fetchWorking;
101
102 //Get an initial price from Fetch to serve as first reference
L, for lastGoodPrice
103 FetchResponse memory fetchResponse = _getCurrentFetchResponse
L O
104
105 require(
106 ! _fetchIsBroken(fetchResponse) && ! _fetchIsFrozen(

L, fetchResponse),
107 "PriceFeed: Fetch must be working and current”

30

FINDINGS & TECH DETAILS

108)

109

110 _storeFetchPrice(fetchResponse);
111

112 _renounceOwnership();

113 3}

BVSS:

AO:S/AC:L/AX:L/C:N/I:N/A:C/D:N/Y:N/R:N/S:U (2.0)

Recommendation:

Do not renounce ownership after calling setAddresses() or check both
oracles with _bothOraclesLiveAndUnbrokenAndSimilarPrice() instead.

Remediation Plan:

SOLVED: The Liquid Loans team fixed this issue by checking both oracles
using the _bothOracleslLiveAndUnbrokenAndSimilarPrice() function in commit
ba8022f.

31

https://github.com/Liquid-Loans-Official/monorepo/commit/ba8022f74fdd5a288e29eed06818067d3ff33bb0

FINDINGS & TECH DETAILS

4.4 (HAL-04) HARDCODED ARRAY
LENGTH - INFORMATIONAL (1.4)

Description:

On the CommunityPoints contract, the number of release slots is set to 25
through a constant in the contract; therefore, it can be easily changed
to any other value. This contract is consumed by the LockupSacrifice
contract, and although it also contains the RELEASE_SLOTS constant, it
is not used in some functions and events in the contracts. Therefore, if
this constant is changed just before deployment to other value different
from 25, the LockupSacrifice contract would not work properly.

Code Location:

43 function _getNextWithdrawAvailable(

44 address _beneficiary
45) internal view returns (uint, uint) {
46 (
47 bool registered_,
48 uint256 total_,
49 uint256[25] memory entitlements_
50) = communityPoints.getEntitlements(_beneficiary); //@Qaudit-
L, issue Hardcoded array length
57
BVSS:

AO:A/AC:H/AX:H/C:N/I:C/A:C/D:N/Y:N/R:N/S:U (1.4)

Recommendation:

Replace the hardcoded number with the RELEASE_SLOTS constant.

32

FINDINGS & TECH DETAILS

Remediation Plan:

SOLVED: The Liquid Loans team fixed this issue by using the RELEASE_SLOTS
constant in commit ba8022f.

33

https://github.com/Liquid-Loans-Official/monorepo/commit/ba8022f74fdd5a288e29eed06818067d3ff33bb0

FINDINGS & TECH DETAILS

4.5 (HAL-05) APPROVE RESTRICTION CAN
BE BYPASSED - INFORMATIONAL (1.4)

Description:

The LOANToken contract prevents the LOANTokens minted to the team multi-
signature wallet from being transferred to any address that is not a
LockupContract for the first year. This restriction is enforced both for
transferring and increasing the allowance every time the caller is the
multisignature wallet.

However, it is possible for the multi-signature to increase the allowance
through the permit() function, as it does not enforce any restriction for
the multi-signature. Although this is partially mitigated by the fact
that even if the allowance is increased, the transferFrom() function still
enforces the restriction if the sender is the multi-signature address.

Code Location:

Listing 5: src/LOAN/LOANToken.sol

335 function permit(

336 address owner,

337 address spender,

338 uint amount,

339 uint deadline,

340 uint8 v,

341 bytes32 r,

342 bytes32 s

343) external override {

344 require(deadline >= now, "LOAN: expired deadline”);
345 bytes32 digest = keccak256(

346 abi.encodePacked(

347 "\x19\x01",

348 domainSeparator (),

349 keccak256 (

350 abi.encode(

351 _PERMIT_TYPEHASH,
352 owner ,

34

FINDINGS & TECH DETAILS

353 spender,

354 amount ,

355 _nonces[ownerJ]++,

356 deadline

357)

358)

359)

360)

361 address recoveredAddress = ecrecover(digest, v, r, s);
362 require(recoveredAddress == owner, "LOAN: invalid signature");
363 _approve (owner, spender, amount);

364 }

BVSS:

AO:A/AC:H/AX:H/C:N/I:C/A:C/D:N/Y:N/R:N/S:U (1.4)

Recommendation:

Add the _requireCallerIsNotMultisig() restriction to the permit() func-
tion if called during the first year.

Remediation Plan:

ACKNOWLEDGED: Since the transferFrom() function already implements the
necessary restrictions for the multisig address, and considering that the
multisig is under the ownership of the Liquid Loans management team, no
modifications to the code have been introduced and the Liquid Loans team
acknowledged the issue.

35

AUTOMATED TESTING

AUTOMATED TESTING

5.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of
certain areas of the smart contracts in scope. Among the tools used was
Slither, a Solidity static analysis framework. After Halborn verified
the smart contracts in the repository and was able to compile them cor-
rectly into their ABIs and binary format, Slither was run against the
contracts. This tool can statically verify mathematical relationships
between Solidity variables to detect invalid or inconsistent usage of the
contracts’ APIs across the entire code-base.

The security team assessed all findings identified by the Slither soft-
ware, however, findings with severity Information and Optimization are
not included in the below results for the sake of report readability.

Results:
Slither results for LockupContract.sol
Finding Impact
LockupContract._getUnlockAmount (uint256) Medium
(src/LOAN/LockupContract.sol#105-125) uses a dangerous strict
equality:
- released == 0 && currentReleaseSlot ==

(src/LOAN/LockupContract.sol#107)

LockupContract.withdrawLOAN() (src/LOAN/LockupContract.sol#78-103) Medium
uses a dangerous strict equality:
- unlockAmount == @ (src/LOAN/LockupContract.sol#92)

37

AUTOMATED TESTING

Finding

Impact

Reentrancy in LockupContract.withdrawlLOAN()
(src/LOAN/LockupContract.sol#78-103): External calls:

- loanToken. transfer(beneficiary,unlockAmount)
(src/LOAN/LockupContract.sol#96) State variables written after the
call(s):

- currentReleaseSlot ++ (src/LOAN/LockupContract.sol#98)
LockupContract.currentReleaseSlot (src/LOAN/LockupContract.sol#37)
can be used in cross function reentrancies:

- LockupContract._getUnlockAmount(uint256)
(src/LOAN/LockupContract.sol#105-125)

- LockupContract.constructor(address,address,uint256,LockupContract
-.LockupClass) (src/LOAN/LockupContract.sol#58-76)

- LockupContract.withdrawlLOAN()
(src/LOAN/LockupContract.sol#78-103)

- nextUnlockTime = startTime + (currentReleaseSlot *
UNLOCK_TIME_SLOT) (src/LOAN/LockupContract.sol#99-101)
LockupContract.nextUnlockTime (src/LOAN/LockupContract.sol#33) can
be used in cross function reentrancies:

- LockupContract._requireLockupDurationHasPassed()
(src/LOAN/LockupContract.sol#145-150)

- LockupContract.constructor(address,address,uint256,LockupContract
-.LockupClass) (src/LOAN/LockupContract.sol#58-76)

- LockupContract.nextUnlockTime (src/LOAN/LockupContract.sol#33)

- LockupContract.withdrawLOAN()
(src/LOAN/LockupContract.sol#78-103)

- released += unlockAmount (src/LOAN/LockupContract.sol#97)
LockupContract.released (src/LOAN/LockupContract.sol#35) can be
used in cross function reentrancies:

- LockupContract._getUnlockAmount (uint256)
(src/LOAN/LockupContract.sol#105-125)

- LockupContract.released (src/LOAN/LockupContract.sol#35)

- LockupContract.withdrawLOAN()
(src/LOAN/LockupContract.sol#78-103)

Medium

LockupContract.constructor(address,address,uint256,LockupContract.
-LockupClass)._beneficiary (src/LOAN/LockupContract.sol#60) lacks a
zero-check on :

- beneficiary = _beneficiary (src/LOAN/LockupContract.sol#71)

Low

38

AUTOMATED TESTING

Finding

Impact

LockupContract._getUnlockAmount(uint256)
(src/LOAN/LockupContract.sol#105-125) uses timestamp for
comparisons Dangerous comparisons:

- block.timestamp >= (startTime + (UNLOCK_TIME_SLOT * 24))
(src/LOAN/LockupContract.sol#120)

Low

LockupContract._requirelLockupDurationHasPassed()
(src/LOAN/LockupContract.sol#145-150) uses timestamp for
comparisons Dangerous comparisons:

- require(bool,string) (block.timestamp >=

nextUnlockTime, LockupContract: The lockup duration must have
passed) (src/LOAN/LockupContract.sol#146-149)

Low

End of table for LockupContract.sol

Slither results for LockupContractCreator.sol

Finding

Impact

LockupContract._getUnlockAmount(uint256)
(src/LOAN/LockupContract.sol#105-125) uses a dangerous strict
equality:

- released == @ && currentReleaseSlot ==
(src/LOAN/LockupContract.sol#107)

Medium

LockupContract.withdrawLOAN() (src/LOAN/LockupContract.sol#78-103)
uses a dangerous strict equality:
- unlockAmount == @ (src/LOAN/LockupContract.sol#92)

Medium

39

AUTOMATED TESTING

Finding

Impact

Reentrancy in LockupContract.withdrawlLOAN()
(src/LOAN/LockupContract.sol#78-103): External calls:

- loanToken. transfer(beneficiary,unlockAmount)
(src/LOAN/LockupContract.sol#96) State variables written after the
call(s):

- currentReleaseSlot ++ (src/LOAN/LockupContract.sol#98)
LockupContract.currentReleaseSlot (src/LOAN/LockupContract.sol#37)
can be used in cross function reentrancies:

- LockupContract._getUnlockAmount(uint256)
(src/LOAN/LockupContract.sol#105-125)

- LockupContract.constructor(address,address,uint256,
-LockupContract.LockupClass) (src/LOAN/LockupContract.sol#58-76)
- LockupContract.withdrawlLOAN()
(src/LOAN/LockupContract.sol#78-103)

- nextUnlockTime = startTime + (currentReleaseSlot *
UNLOCK_TIME_SLOT) (src/LOAN/LockupContract.sol#99-101)
LockupContract.nextUnlockTime (src/LOAN/LockupContract.sol#33) can
be used in cross function reentrancies:

- LockupContract._requireLockupDurationHasPassed()
(src/LOAN/LockupContract.sol#145-150)

- LockupContract.constructor(address,address,uint256,
-LockupContract.LockupClass) (src/LOAN/LockupContract.sol#58-76)
- LockupContract.nextUnlockTime (src/LOAN/LockupContract.sol#33)
- LockupContract.withdrawLOAN()
(src/LOAN/LockupContract.sol#78-103)

- released += unlockAmount (src/LOAN/LockupContract.sol#97)
LockupContract.released (src/LOAN/LockupContract.sol#35) can be
used in cross function reentrancies:

- LockupContract._getUnlockAmount (uint256)
(src/LOAN/LockupContract.sol#105-125)

- LockupContract.released (src/LOAN/LockupContract.sol#35)

- LockupContract.withdrawLOAN()
(src/LOAN/LockupContract.sol#78-103)

Medium

LockupContractCreator.setParamsAndDeploylLockupContract
-(address,address, address,address) . _beneficiaryB
(src/LOAN/LockupContractCreator.sol#44) lacks a zero-check on :
- teamLockB = lockupContractFactory.deployLockupContract(_-
beneficiaryB,startTime,LockupContract

-.LockupClass.B) (src/LOAN/LockupContractCreator.sol#59-63)

Low

40

AUTOMATED TESTING

Finding

Impact

LockupContractCreator.setParamsAndDeploylLockupContract

-(address,address,address,address)._beneficiaryA

(src/LOAN/LockupContractCreator.sol#43) lacks a zero-check on :

- teamLockA = lockupContractFactory.deploylLockupContract(_-
beneficiaryA,startTime,LockupContract.LockupClass.A)
(src/LOAN/LockupContractCreator.sol#54-58)

Low

LockupContract.constructor(address,address,uint256,
-LockupContract.LockupClass)._beneficiary
(src/LOAN/LockupContract.sol#60) lacks a zero-check on :

- beneficiary = _beneficiary (src/LOAN/LockupContract.sol#71)

Low

Reentrancy in
LockupContractCreator.setParamsAndDeploylLockupContract
-(address, address,address, address)
(src/LOAN/LockupContractCreator.sol#40-71): External calls:
- teamLockA = lockupContractFactory.deployLockupContract(_-
beneficiaryA,startTime,LockupContract.LockupClass.A)
(src/LOAN/LockupContractCreator.sol#54-58)

- teamLockB = lockupContractFactory.deployLockupContract(_-
beneficiaryB,startTime,LockupContract.LockupClass.B)

(src/LOAN/LockupContractCreator.sol#59-63) State variables written

after the call(s):

- teamLockB = lockupContractFactory.deployLockupContract(_-
beneficiaryB,startTime,LockupContract.LockupClass.B)
(src/LOAN/LockupContractCreator.sol#59-63)

Low

LockupContract._getUnlockAmount (uint256)
(src/LOAN/LockupContract.sol#105-125) uses timestamp for
comparisons Dangerous comparisons:

- block.timestamp >= (startTime + (UNLOCK_TIME_SLOT * 24))
(src/LOAN/LockupContract.sol#120)

Low

LockupContract._requirelLockupDurationHasPassed()
(src/LOAN/LockupContract.sol#145-150) uses timestamp for
comparisons Dangerous comparisons:

- require(bool,string) (block.timestamp >=

nextUnlockTime, LockupContract: The lockup duration must have
passed) (src/LOAN/LockupContract.sol#146-149)

Low

End of table for LockupContractCreator.sol

41

AUTOMATED TESTING

Slither results for LockupContractFactory.sol

Finding Impact
LockupContract._getUnlockAmount(uint256) Medium
(src/LOAN/LockupContract.sol#105-125) uses a dangerous strict
equality:

- released == @ && currentReleaseSlot ==
(src/LOAN/LockupContract.sol#107)
LockupContract.withdrawLOAN() (src/LOAN/LockupContract.sol#78-103) Medium

uses a dangerous strict equality:
- unlockAmount == @ (src/LOAN/LockupContract.sol#92)

42

AUTOMATED TESTING

Finding

Impact

Reentrancy in LockupContract.withdrawlLOAN()
(src/LOAN/LockupContract.sol#78-103): External calls:

- loanToken. transfer(beneficiary,unlockAmount)
(src/LOAN/LockupContract.sol#96) State variables written after the
call(s):

- currentReleaseSlot ++ (src/LOAN/LockupContract.sol#98)
LockupContract.currentReleaseSlot (src/LOAN/LockupContract.sol#37)
can be used in cross function reentrancies:

- LockupContract._getUnlockAmount(uint256)
(src/LOAN/LockupContract.sol#105-125)
LockupContract.constructor(address,address,uint256,LockupContract.Lod
(src/LOAN/LockupContract.sol#58-76)

- LockupContract.withdrawlLOAN()

(src/LOAN/LockupContract.sol#78-103)

- nextUnlockTime = startTime + (currentReleaseSlot *
UNLOCK_TIME_SLOT) (src/LOAN/LockupContract.sol#99-101)
LockupContract.nextUnlockTime (src/LOAN/LockupContract.sol#33) can
be used in cross function reentrancies:

- LockupContract._requirelLockupDurationHasPassed()
(src/LOAN/LockupContract.sol#145-150)
LockupContract.constructor(address,address,uint256,LockupContract.Lod
(src/LOAN/LockupContract.sol#58-76)

- LockupContract.nextUnlockTime (src/LOAN/LockupContract.sol#33)
- LockupContract.withdrawlLOAN()
(src/LOAN/LockupContract.sol#78-103)

- released += unlockAmount (src/LOAN/LockupContract.sol#97)
LockupContract.released (src/LOAN/LockupContract.sol#35) can be
used in cross function reentrancies:

- LockupContract._getUnlockAmount (uint256)
(src/LOAN/LockupContract.sol#105-125)

- LockupContract.released (src/LOAN/LockupContract.sol#35)

- LockupContract.withdrawlLOAN()
(src/LOAN/LockupContract.sol#78-103)

Medium

kupClass|

kupClass

43

AUTOMATED TESTING

Finding Impact
LockupContractFactory.setLOANTokenAddress(address)._- Low
loanTokenAddress (src/LOAN/LockupContractFactory.sol#43) lacks a
zero-check on :

- loanTokenAddress = _loanTokenAddress
(src/LOAN/LockupContractFactory.sol#46)
LockupContract.constructor(address,address,uint256,LockupContract.Logkup@hass)) .
beneficiary (src/LOAN/LockupContract.sol#60) lacks a zero-check on :
- beneficiary = _beneficiary (src/LOAN/LockupContract.sol#71)
LockupContract._getUnlockAmount (uint256) Low
(src/LOAN/LockupContract.sol#105-125) uses timestamp for
comparisons Dangerous comparisons:
- block.timestamp >= (startTime + (UNLOCK_TIME_SLOT * 24))
(src/LOAN/LockupContract.sol#120)
LockupContract._requireLockupDurationHasPassed() Low
(src/LOAN/LockupContract.sol#145-150) uses timestamp for
comparisons Dangerous comparisons:
- require(bool,string) (block.timestamp >=
nextUnlockTime,LockupContract: The lockup duration must have
passed) (src/LOAN/LockupContract.sol#146-149)

End of table for LockupContractFactory.sol

Slither results for LockupSacrifice.sol

Finding Impact

Reentrancy in LockupSacrifice.withdrawlLOAN() Medium

(src/LOAN/LockupSacrifice.sol#75-88): External calls:

- loanToken.transfer(msg.sender,entitlement_)
(src/LOAN/LockupSacrifice.sol#79) State variables written after the
call(s):

- _beneficiaries[msg.sender].withdrawn[i - 1] = true
(src/LOAN/LockupSacrifice.sol#80) LockupSacrifice._beneficiaries
(src/LOAN/LockupSacrifice.sol#30@) can be used in cross function
reentrancies:

- LockupSacrifice._getNextWithdrawAvailable(address)
(src/LOAN/LockupSacrifice.sol#43-68)

- LockupSacrifice.getLOANtokenWithdrawnEntitlements(address)
(src/LOAN/LockupSacrifice.sol#111-115)

- LockupSacrifice.withdrawLOAN()
(src/LOAN/LockupSacrifice.sol#75-88)

44

AUTOMATED TESTING

Finding

Impact

LockupSacrifice.getLOANtokenEntitlements(address)
(src/LOAN/LockupSacrifice.sol#103-109) ignores return value by
(entitlements_) = communityPoints.getEntitlements(_beneficiary)
(src/LOAN/LockupSacrifice.sol#106-107)

Medium

Reentrancy in LockupSacrifice.withdrawLOAN()
(src/LOAN/LockupSacrifice.sol#75-88): External calls:

- loanToken.transfer(msg.sender,entitlement_)
(src/LOAN/LockupSacrifice.sol#79) Event emitted after the call(s):
- SacrificeEntitlementReleased(msg.sender,entitlement_,i -
1,block.timestamp) (src/LOAN/LockupSacrifice.sol#81-86)

Low

LockupSacrifice._getNextWithdrawAvailable(address)
(src/LOAN/LockupSacrifice.sol#43-68) uses timestamp for comparisons
Dangerous comparisons:

- 1 < RELEASE_SLOTS && block.timestamp >= releaseSlots[i]
(src/LOAN/LockupSacrifice.sol#57)

Low

End of table for LockupSacrifice.sol

Slither results for PriceFeed.sol

Finding

Impact

Reentrancy in PriceFeed.setAddresses(address,address)
(src/PriceFeed.sol#89-113): External calls:

- fetchResponse = _getCurrentFetchResponse() (src/PriceFeed.sol#103)
- (ifRetrieve,value,_timestampRetrieved) =
fetchCaller.getFetchCurrentValue(PLSUSD_FETCH_REQ_ID)
(src/PriceFeed.sol#121-136) State variables written after the
call(s):

- _storeFetchPrice(fetchResponse) (src/PriceFeed.sol#110)

- lastGoodPrice = _currentPrice (src/PriceFeed.sol#202)

Low

45

AUTOMATED TESTING

Finding

Impact

Reentrancy in PriceFeed.fetchPrice() (src/PriceFeed.sol#218-451):

External calls:

- fetchResponse = _getCurrentFetchResponse() (src/PriceFeed.sol#220)

(ifRetrieve,value,_timestampRetrieved) =

fetchCaller.getFetchCurrentValue(PLSUSD_FETCH_REQ_ID)
(src/PriceFeed.sol#121-136)

prevFetchResponse =

_getPreviousFetchResponse(fetchResponse. timestamp)
(src/PriceFeed.sol#221-223)

(ifRetrieve,value,_timestampRetrieved) =

fetchCaller.getFetchPreviousValue (PLSUSD_FETCH_REQ_ID, timestamp)
(src/PriceFeed.sol#143-156)

secondaryResponse = _getCurrentSecondaryResponse()

(src/PriceFeed.sol#224-225)

(_response.ifRetrieve,_response.value,_response.timestamp,_-

response.success) = secondaryOracle.getPrice()
(src/PriceFeed.sol#569-574) State variables written after the
call(s):

_storeSecondaryPrice(secondaryResponse) (src/PriceFeed.sol#246)
lastGoodPrice = _currentPrice (src/PriceFeed.sol#202)
_storeSecondaryPrice(secondaryResponse) (src/PriceFeed.sol#265)
lastGoodPrice = _currentPrice (src/PriceFeed.sol#202)
_storeFetchPrice(fetchResponse) (src/PriceFeed.sol#289)
lastGoodPrice = _currentPrice (src/PriceFeed.sol#202)
_storeSecondaryPrice(secondaryResponse) (src/PriceFeed.sol#296)
lastGoodPrice = _currentPrice (src/PriceFeed.sol#202)
_storeFetchPrice(fetchResponse) (src/PriceFeed.sol#305)
lastGoodPrice = _currentPrice (src/PriceFeed.sol#202)
storeFetchPrice(fetchResponse) (src/PriceFeed.sol#318)

lastGoodPrice = _currentPrice (src/PriceFeed.sol#202)
_storeSecondaryPrice(secondaryResponse) (src/PriceFeed.sol#334)
lastGoodPrice = _currentPrice (src/PriceFeed.sol#202)
_storeFetchPrice(fetchResponse) (src/PriceFeed.sol#350)
lastGoodPrice = _currentPrice (src/PriceFeed.sol#202)
_storeSecondaryPrice(secondaryResponse) (src/PriceFeed.sol#374)
lastGoodPrice = _currentPrice (src/PriceFeed.sol#202)
_storeSecondaryPrice(secondaryResponse) (src/PriceFeed.sol#390)
lastGoodPrice = _currentPrice (src/PriceFeed.sol#202)
_storeFetchPrice(fetchResponse) (src/PriceFeed.sol#396)
lastGoodPrice = _currentPrice (src/PriceFeed.sol#202)
_storeFetchPrice(fetchResponse) (src/PriceFeed.sol#408)

lastGoodPrice = _currentPrice (src/PriceFeed.sol#202)

storeSecondaryPrice(secondaryResponse) (src/PriceFeed.sol#413)

TAact+t-rAAnADLT ~A — ~trrmrAarntEFDrre ~A fermrmar /D ~ACAAA aATHOYNON

Low

46

AUTOMATED TESTING

Finding

Impact

Reentrancy in PriceFeed.fetchPrice() (src/PriceFeed.sol#218-451):
External calls:

- fetchResponse = _getCurrentFetchResponse() (src/PriceFeed.sol#220)

- (ifRetrieve,value,_timestampRetrieved) =
fetchCaller.getFetchCurrentValue(PLSUSD_FETCH_REQ_ID)
(src/PriceFeed.sol#121-136)

- prevFetchResponse =
_getPreviousFetchResponse(fetchResponse. timestamp)
(src/PriceFeed.sol#221-223)

- (ifRetrieve,value,_timestampRetrieved) =
fetchCaller.getFetchPreviousValue (PLSUSD_FETCH_REQ_ID, timestamp)
(src/PriceFeed.sol#143-156)

- secondaryResponse = _getCurrentSecondaryResponse()
(src/PriceFeed.sol#224-225)

- (_response.ifRetrieve,_response.value,_response.timestamp,_-
response.success) = secondaryOracle.getPrice()
(src/PriceFeed.sol#569-574) Event emitted after the call(s):

- LastGoodPriceUpdated(_currentPrice) (src/PriceFeed.sol#203)

- _storeFetchPrice(fetchResponse) (src/PriceFeed.sol#437)

- LastGoodPriceUpdated(_currentPrice) (src/PriceFeed.sol#203)

- _storeSecondaryPrice(secondaryResponse) (src/PriceFeed.sol#413)
- LastGoodPriceUpdated(_currentPrice) (src/PriceFeed.sol#203)

- _storeFetchPrice(fetchResponse) (src/PriceFeed.sol#408)

- LastGoodPriceUpdated(_currentPrice) (src/PriceFeed.sol#203)

- _storeFetchPrice(fetchResponse) (src/PriceFeed.sol#289)

- LastGoodPriceUpdated(_currentPrice) (src/PriceFeed.so0l#203)

- _storeSecondaryPrice(secondaryResponse) (src/PriceFeed.sol#296)
- LastGoodPriceUpdated(_currentPrice) (src/PriceFeed.sol#203)

- _storeSecondaryPrice(secondaryResponse) (src/PriceFeed.sol#246)

- LastGoodPriceUpdated(_currentPrice) (src/PriceFeed.sol#203)
- _storeSecondaryPrice(secondaryResponse) (src/PriceFeed.sol#265)
- LastGoodPriceUpdated(_currentPrice) (src/PriceFeed.sol#203)
- _storeFetchPrice(fetchResponse) (src/PriceFeed.sol#396)

- LastGoodPriceUpdated(_currentPrice) (src/PriceFeed.sol#203)
- _storeFetchPrice(fetchResponse) (src/PriceFeed.sol#449)

- LastGoodPriceUpdated(_currentPrice) (src/PriceFeed.sol#203)
- _storeFetchPrice(fetchResponse) (src/PriceFeed.sol#318)

- LastGoodPriceUpdated(_currentPrice) (src/PriceFeed.sol#203)
- _storeFetchPrice(fetchResponse) (src/PriceFeed.sol#350)

- LastGoodPriceUpdated(_currentPrice) (src/PriceFeed.sol#203)
- _storeFetchPrice(fetchResponse) (src/PriceFeed.sol#305)

- LastGoodPriceUpdated(_currentPrice) (src/PriceFeed.sol#203)
- _storeSecondaryPrice(secondaryResponse) (src/PriceFeed.sol#374)

0l o aet+CAAAD T ~AAIAAAFAAYY Atir,rrAantEFD Y A~AN e A/Drra A~ACAAA AATHONO N

Low

47

AUTOMATED TESTING

Finding

Impact

PriceFeed.setAddresses(address,address) (src/PriceFeed.sol#89-113)
uses timestamp for comparisons Dangerous comparisons:

- require(bool,string) (! _fetchIsBroken(fetchResponse) && !
_fetchIsFrozen(fetchResponse),PriceFeed: Fetch must be working and
current) (src/PriceFeed.sol#105-108)

Low

PriceFeed._fetchIsBroken(PriceFeed.FetchResponse)
(src/PriceFeed.sol#166-184) uses timestamp for comparisons
Dangerous comparisons:

- _response.timestamp == @ || _response.timestamp > block.timestamp
(src/PriceFeed.sol#175)

Low

PriceFeed._fetchIsFrozen(PriceFeed.FetchResponse)
(src/PriceFeed.sol#159-164) uses timestamp for comparisons
Dangerous comparisons:

- block.timestamp.sub(_fetchResponse.timestamp) > TIMEOUT
(src/PriceFeed.sol#163)

Low

PriceFeed._-
bothOraclesLiveAndUnbrokenAndSimilarPrice(PriceFeed.FetchResponse,
-zPriceFeed. SecondaryOracleResponse) (src/PriceFeed.sol#453-470)
uses timestamp for comparisons Dangerous comparisons:

- _secondaryIsBroken(_secondaryOracleResponse) ||
_secondaryIsFrozen(_secondaryOracleResponse) ||

_fetchIsBroken(_fetchResponse) || _fetchIsFrozen(_fetchResponse)
(src/PriceFeed.sol#460-463)

Low

PriceFeed._secondaryIsFrozen(PriceFeed.SecondaryOracleResponse)
(src/PriceFeed.sol#532-537) uses timestamp for comparisons
Dangerous comparisons:

- block.timestamp.sub(_response.timestamp) > TIMEOUT
(src/PriceFeed.sol#536)

Low

PriceFeed._secondaryIsBroken(PriceFeed.SecondaryOracleResponse)
(src/PriceFeed.sol#539-557) uses timestamp for comparisons
Dangerous comparisons:

- _response.timestamp == @ || _response.timestamp > block.timestamp
(src/PriceFeed.sol#548)

Low

End of table for PriceFeed.sol

Slither results for FetchCaller.sol

Finding

Impact

48

AUTOMATED TESTING

Finding

Impact

UsingFetch.getDataBefore(bytes32,uint256)
(src/Dependencies/UsingFetch.sol#59-68) ignores return value by
(None, _value,_timestampRetrieved) =
fetch.getDataBefore(_queryId,_timestamp)
(src/Dependencies/UsingFetch.sol#64-67)

Medium

UsingFetch.getIndexForDataBefore(bytes32,uint256)
(src/Dependencies/UsingFetch.sol#169-175) ignores return value by
fetch.getIndexForDataBefore(_queryld, _timestamp)
(src/Dependencies/UsingFetch.sol#174)

Medium

UsingFetch.getTimestampbyQueryIdandIndex(bytes32,uint256)
(src/Dependencies/UsingFetch.sol#271-277) has external calls inside
a loop: fetch.getTimestampbyQueryIdandIndex(_queryId,_index)
(src/Dependencies/UsingFetch.sol#276)

Low

UsingFetch.retrieveData(bytes32,uint256)
(src/Dependencies/UsingFetch.sol#299-305) has external calls inside
a loop: fetch.retrieveData(_queryld,_timestamp)
(src/Dependencies/UsingFetch.sol#304)

Low

UsingFetch.isInDispute(bytes32,uint256)
(src/Dependencies/UsingFetch.sol#285-291) has external calls inside
a loop: fetch.isInDispute(_queryld,_timestamp)
(src/Dependencies/UsingFetch.sol#290)

Low

End of table for FetchCaller.sol

Slither results for UsingFetch.sol

Finding

Impact

UsingFetch.getDataBefore(bytes32,uint256)
(src/Dependencies/UsingFetch.sol#59-68) ignores return value by
(None, _value,_timestampRetrieved) =
fetch.getDataBefore(_queryId,_timestamp)
(src/Dependencies/UsingFetch.sol#64-67)

Medium

UsingFetch.getIndexForDataBefore(bytes32,uint256)
(src/Dependencies/UsingFetch.sol#169-175) ignores return value by
fetch.getIndexForDataBefore(_queryld, _timestamp)
(src/Dependencies/UsingFetch.sol#174)

Medium

UsingFetch.getTimestampbyQueryIdandIndex(bytes32,uint256)
(src/Dependencies/UsingFetch.sol#271-277) has external calls inside
a loop: fetch.getTimestampbyQueryIdandIndex(_queryId,_index)
(src/Dependencies/UsingFetch.sol#276)

Low

49

AUTOMATED TESTING

Finding Impact
UsingFetch.retrieveData(bytes32,uint256) Low
(src/Dependencies/UsingFetch.sol#299-305) has external calls inside
a loop: fetch.retrieveData(_queryld,_timestamp)
(src/Dependencies/UsingFetch.sol#304)
UsingFetch.isInDispute(bytes32,uint256) Low

(src/Dependencies/UsingFetch.sol#285-291) has external calls inside
a loop: fetch.isInDispute(_queryId,_timestamp)
(src/Dependencies/UsingFetch.sol#290)

End of table for UsingFetch.sol

The findings obtained as a result of the Slither scan were reviewed, and they

were not included in the report because they were determined false positives.

50

AUTOMATED TESTING

5.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of well-known
security issues and to identify low-hanging fruits on the targets for this
engagement. Among the tools used was MythX, a security analysis service for
Ethereum smart contracts. MythX performed a scan on the smart contracts and sent
the compiled results to the analyzers in order to locate any vulnerabilities.

Results:

Report for LOAN/LockupContract.sol ~
https://dashboard.mythx.io/#/console/analyses/ed4477a3d-23d7-4bac-a8b1-7af476583c14
https://dashboard.mythx. io/#/console/analyses/c5916f89-e964-4ae1-9855-9863cc3934cc

Line | SWC Title Severity Shart Description

97 | (SWC-101) Integer Overflow and Underflow | Unknown Arithmetic operation “+=" discovered

98 | (SWC-101) Integer Overflow and Underflow | Unknown Arithmetic operation “++" discovered
108 | (SWC-101) Integer Overflow and Underflow | Unknown Arithmetic operation “+" discovered
101 | (SWC-101) Integer Overflow and Underflow | Unknown Arithmetic operation “#" discovered
109 | (SWC-101) Integer Overflow and Underflow | Unknown Arithmetic operation “/" discovered
113 | (SWC-101) Integer Overflow and Underflow | Unknown Arithmetic operation "#" discovered
113 | (SWC-101) Integer Overflow and Underflow | Unknown Arithmetic operation “/" discovered
113 | (SWC-101) Integer Overflow and Underflow | Unknown Arithmetic operation "-" discovered
120 | (SWC-101) Integer Overflow and Underflow | Unknown Arithmetic operation “+" discovered
120 | (SWC-101) Integer Overflow and Underflow | Unknown Arithmetic operation "#" discovered

Report for LOAN/LockupContractFactory.sol
https://dashboard.mythx. io/#/console/analyses/52f723e3-3982-4419-a8e@-a8f108c0252f

Line | SWC Title Severity Short Description
26 | (SWC-123) Requirement Violation | Low Requirement violation.
55 | (SWC-118) Assert Violation Low An assertion violation was triggered.
55 | (SWC-123) Requirement Violation | Low Requirement violation.

Report for LOAN/LockupSacrifice.sol
https://dashboard.mythx.io/#/console/analyses/b@89e84f—f51b-4bc7-8468-a2a534121572

Line | SWC Title Severity Short Description

55 (SWC-116) Timestamp Dependence | Low A control flow decision is made based on The block.timestamp environment variable.

Report for UsingFetch.sol
https://dashboard.mythx, i0/#/console/analyses/ec988988-e17a-485c—b885-e7db@cc5da97

Line | SWC Title Severity Short Description
199 | (SWC-1@1) Integer Overflow and Underflow | High The arithmetic operator can underflow.
276 | (SWC-113) DoS with Failed Call Low Multiple calls are executed in the same transaction.

Report for PriceFeed.sol
https://dashboard.mythx. io/#/console/analyses/4f830188-918c-43ed-a9@7-cc48f48b4274

Line | SWC Title Severity Short Description

144 | (SWC-107) Reentrancy Low Write to persistent state following external call
144 | (SWC-107) Reentrancy Low Read of persistent state following external call
144 | (SWC-113) DoS with Failed Call | Low Multiple calls are executed in the same transaction.
196 | (SWC-107) Reentrancy Low Read of persistent state following external call
228 | (SWC-187) Reentrancy Low Read of persistent state following external call
234 | (SWC-1@7) Reentrancy Low Read of persistent state following external call
574 | (SWC-187) Reentrancy Low Write to persistent state following external call
574 | (SWC-187) Reentrancy Low Read of persistent state following external call

51

AUTOMATED TESTING

The findings obtained as a result of the MythX scan were examined, and
they were not included in the report because they were determined false positives.

52

THANK YOU FOR CHOOSING

// HALBORN

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	ASSESSMENT SUMMARY
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT
	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Proof Of Concept
	BVSS
	Recommendation
	Reference
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Results

	AUTOMATED SECURITY SCAN
	Description
	Results

