
// Security Assessment 11.18.2025 - 11.21.2025

Decentralized
Borrowing Protocol
Liquid Loans

D e c e n t ra l i z e d B o r r ow i n g P r o t o c o l - L i q u i d L oa n s

Prepared by: HALBORN

Last Updated 12/12/2025

Date of Engagement: November 18th, 2025 - November 21st, 2025

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

3

CRITICAL

1

HIGH

0

MEDIUM

0

LOW

1

INFORMATIONAL

1

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Incorrect decimal normalization in uniswap v2 oracle price calculations leading to price
inflation
7.2 Use of outdated solidity version
7.3 Use of outdated openzeppelin libraries

1 0 0%

1 . I N T R O D U C T I O N

Liquid Loans engaged Halborn to conduct a security assessment on their smart contracts beginning
on November 18th, 2025 and ending on November 20th, 2025. The security assessment was scoped to
the smart contracts provided in the Github repository, provided to the Halborn team. Commit hash and
further details can be found in the Scope section of this report.

The reviewed contracts LoanAirdrop and CommunityIssuance contracts work together to distribute LOAN
tokens to eligible users through a merkle-based airdrop and protocol-driven issuance schedule. The
LoanAirdrop contract validates user allocations via Merkle proofs and releases tokens over predefined
monthly claim windows, while the CommunityIssuance contract mints and streams LOAN rewards to
stability pool participants based on protocol conditions. These components rely on price-oracle caller
contracts, which fetch TWAP prices from Uniswap pools to support accurate valuation and reward
calculations, ensuring that token distribution and issuance remain aligned with real-time market
conditions.

2. A S S E S S M E N T S U M M A RY

Halborn was provided with 3 days for this engagement and assigned a full-time security engineer to
assess the security of the smart contracts in scope. The assigned engineer possess deep expertise in
blockchain and smart contract security, including hands-on experience with multiple blockchain
protocols.

The objective of this assessment is to:

Identify potential security issues within the Liquid Loans protocol smart contracts.
Ensure that smart contract of `̀̀̀Liquid Loans protocol functions operate as intended.

In summary, Halborn identified several areas for improvement to reduce the likelihood and impact of
security risks, which were partially addressed by the Liquid Loans team . The main ones were:

Update the inversion logic to correctly rescale based on token decimals.
Upgrade the contract to Newer Solidity version.
Upgrade all OpenZeppelin dependencies to the latest stable version.

3. T E S T A P P R O A C H A N D M E T H O D O L O GY

Halborn performed a combination of manual review of the code and automated security testing to
balance efficiency, timeliness, practicality, and accuracy in regard to the scope of the smart contract
assessment. While manual testing is recommended to uncover flaws in logic, process, and
implementation; automated testing techniques help enhance coverage of smart contracts and can
quickly identify items that do not follow security best practices.

The following phases and associated tools were used throughout the term of the assessment:

Research into the architecture and purpose of the Liquid Loans protocol.
Manual code review and walkthrough of the Liquid Loans in-scope contracts.
Manual assessment of critical Solidity variables and functions to identify potential vulnerability

classes.
Manual testing using custom scripts.
Static Analysis of security for scoped contract, and imported functions. (Slither).
Local deployment and testing with (Foundry , Remix IDE).

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means
by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory
challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

M ​E

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (C:N)
Low (C:L)

Medium (C:M)
High (C:H)

Critical (C:C)

0
0.25
0.5

0.75
1

M ​E

E

E = m ​∏ e

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

C

r

s

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

C = rs

S

S = min(10,EIC ∗ 10)

5. S C O P E

REPOSITOR IES

(a) Repository: monorepo

(b) Assessed Commit ID: 765ec6d

(c) Items in scope:

packages/contracts/contracts/LOAN/LockupAirdrop.sol
packages/contracts/contracts/LOAN/CommunityIssuance.sol

Out-of-Scope: Third party dependencies and economic attacks.

(a) Repository: oracle-callers

(b) Assessed Commit ID: 28acf2b

(c) Items in scope:

contracts/UniswapV2Caller.sol
contracts/UniswapV3Caller.sol
contracts/SecondaryCallerUpdateable.sol
contracts/libraries/TickMathWrapper.sol
contracts/interfaces/IERC20Metadata.sol
contracts/interfaces/IPriceFeedSecondaryUpdateable.sol
contracts/interfaces/ITickMathWrapper.sol
contracts/interfaces/IUniswapV2Pool.sol
contracts/interfaces/IUniswapV3Pool.sol

Out-of-Scope: Third party dependencies and economic attacks.

REMEDIAT ION COMMIT ID :

https://github.com/Liquid-Loans-Official/oracle-callers/pull/30/commits/ffd8f911c3a117c86
052b123c7bb7b7ac43fa9cd
https://github.com/Liquid-Loans-Official/monorepo/tree/audit

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL HIGH MEDIUM LOW

https://github.com/Liquid-Loans-Official/monorepo
https://github.com/Liquid-Loans-Official/monorepo/commit/765ec6d690bbac83e0d083e97d7a72870000522d/
https://github.com/Liquid-Loans-Official/oracle-callers/
https://github.com/Liquid-Loans-Official/oracle-callers/commit/28acf2bc6b6252b5fc4f3706fd6025533c857b03
https://github.com/Liquid-Loans-Official/oracle-callers/pull/30/commits/ffd8f911c3a117c86052b123c7bb7b7ac43fa9cd
https://github.com/Liquid-Loans-Official/oracle-callers/pull/30/commits/ffd8f911c3a117c86052b123c7bb7b7ac43fa9cd
https://github.com/Liquid-Loans-Official/monorepo/tree/audit

1 0 0 1

INFORMATIONAL

1

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

INCORRECT DECIMAL NORMALIZATION IN UNISWAP
V2 ORACLE PRICE CALCULATIONS LEADING TO PRICE

INFLATION
CRITICAL SOLVED - 11/24/2025

USE OF OUTDATED SOLIDITY VERSION LOW
RISK ACCEPTED -

11/24/2025

USE OF OUTDATED OPENZEPPELIN LIBRARIES INFORMATIONAL
ACKNOWLEDGED -

11/24/2025

7. F I N D I N G S & T EC H D E TA I L S

7.1 I N C O R R EC T D EC I M A L N O R M A L I Z AT I O N I N U N I SWA P V 2

O R AC L E P R I C E CA LC U L AT I O N S L E A D I N G TO P R I C E

I N F L AT I O N

// CRITICAL

Description
In the UniswapV2Caller contract, the update() function normalizes prices as if both tokens always
use 18 decimals. This leads to severe inflation when pools involve tokens with fewer decimals (e.g., USDC
with 6 decimals). The root vulnerability is missing decimal normalization before scaling to 1e18, causing
~1e12 over-scaling in ETH/USD pricing.

In UniswapV2Caller :
The V2 oracle takes Uniswap’s UQ112x112 cumulative prices and directly converts them into 1e18
precision:

This implicitly assumes both tokens use 18 decimals. In a USDC/ETH pool (token0 = USDC, 6 decimals),
the conversion multiplies the price by 1e12, resulting in values such as ~324,408,010 ETH per USDC
instead of the expected ~0.0003 ETH per USDC. This breaks any protocol consuming ETH/USD or USD-
denominated feeds, leading to corrupted collateralization logic, incorrect liquidations, and oracle-driven
insolvency risk.

Due to this:

Liquity-style oracle consumers receive ETH prices inflated by 1e12.
Collateralization ratios become meaningless.
Liquidations may trigger incorrectly.
Lending systems become insolvent or reject valid operations.
Any economic logic depending on accurate ETH/USD price becomes corrupted.

Proof of Concept
Place the UniswapV2CallerPoC.t.sol file inside the foundry/test directory. This proof-of-concept
highlights a decimal-inversion bug in the UniswapV2Caller contract: when the oracle is configured
with invert = true , the TWAP returned from Uniswap V2 is inverted but not re-scaled to the correct
decimal format, causing a silent mispricing (USDC decimals ignored). By forking Ethereum mainnet and
comparing the real ETH price against the oracle’s output, the test demonstrates that the oracle reports a

lastPriceX18 = (avgUQ112x112 * 1e18) >> 112;44

Copy Code

price that is off by decimals, proving that inverted TWAP values must be normalized to token decimals
before converting from UQ112x112 to 1e18 format.

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

import "forge-std/Test.sol";
import "forge-std/console.sol";

interface IERC20 {
 function decimals() external view returns (uint8);
 function balanceOf(address) external view returns (uint256);
}

interface IUniswapV2Pool {
 function token0() external view returns (address);
 function token1() external view returns (address);
 function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTim
 function price0CumulativeLast() external view returns (uint256);
 function price1CumulativeLast() external view returns (uint256);
}

interface IPriceFeedSecondaryUpdateable {
 function getLastValue() external view returns (bool success, uint256 value, uint256 timestamp, by
 function getCurrentValue() external returns (bool success, uint256 value, uint256 timestamp, byte
}

contract UniswapV2Caller is IPriceFeedSecondaryUpdateable {

 IUniswapV2Pool public immutable pair;
 bool public immutable invert;

 uint32 public immutable minWindow;
 uint32 public timestampLast;
 uint256 public lastPriceX18;
 uint256 public priceCumulativeLast;

 constructor(address _pair, uint32 _minWindow, bool _invert) {
 require(_pair != address(0), "zero pair");
 require(_minWindow > 0, "bad window");

 pair = IUniswapV2Pool(_pair);
 invert = _invert;
 minWindow = _minWindow;

 // initialize snapshot
 (, , uint32 ts) = pair.getReserves();
 timestampLast = ts;
 priceCumulativeLast = invert ? pair.price0CumulativeLast() : pair.price1CumulativeLast();
 }

 function update() public {
 uint256 cumulativeNow = invert ? pair.price0CumulativeLast() : pair.price1CumulativeLast();
 (, , uint32 ts) = pair.getReserves();

 uint32 elapsed = ts - timestampLast;

 // Enforce minimum window
 if (elapsed < minWindow) {
 // Not enough time: just return last stored price
 return;
 }

 // BUG: No decimal normalization!
 uint256 avgUQ112x112 = (cumulativeNow - priceCumulativeLast) / elapsed;
 lastPriceX18 = (avgUQ112x112 * 1e18) >> 112;

 priceCumulativeLast = cumulativeNow;
 timestampLast = ts;
 }

 function getLastValue()
 public

Copy Code

 view
 override
 returns (bool success, uint256 value, uint256 timestamp, bytes32 data)
 {
 if (lastPriceX18 == 0) {
 return (false, 0, 0, bytes32(0));
 }
 return (true, lastPriceX18, timestampLast, bytes32(0));
 }

 function getCurrentValue()
 external
 override
 returns (bool success, uint256 value, uint256 timestamp, bytes32 data)
 {
 update();
 return getLastValue();
 }
}

contract UniswapV2CallerPoC is Test {
 // Real Ethereum mainnet addresses
 address constant USDC_ETH_POOL = 0xB4e16d0168e52d35CaCD2c6185b44281Ec28C9Dc;
 address constant USDC = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48;
 address constant WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;

 IUniswapV2Pool public pool;

 function setUp() public {
 console.log("=== Pool Configuration ===");
 console.log("Pool:", USDC_ETH_POOL);
 console.log("USDC:", USDC);
 console.log("WETH:", WETH);
 }

 function test1DecimalBugDemonstration() public {
 console.log("\n=== DEMONSTRATING DECIMAL BUG ON REAL POOL ===\n");

 // Fork at a specific block
 vm.createSelectFork("https://eth-mainnet.g.alchemy.com/v2/TJYxxlJAsVXGQS15KRdJaTIhtM00iWzF",

 pool = IUniswapV2Pool(USDC_ETH_POOL);

 // Verify token order
 address token0 = pool.token0();
 address token1 = pool.token1();

 console.log("Token0:", token0, "(USDC)");
 console.log("Token1:", token1, "(WETH)");
 console.log("USDC decimals:", IERC20(USDC).decimals());
 console.log("WETH decimals:", IERC20(WETH).decimals());

 // Get initial state
 (uint112 reserve0_initial, uint112 reserve1_initial, uint32 ts_initial) = pool.getReserves();
 uint256 price0Cumulative_initial = pool.price0CumulativeLast();

 console.log("\n--- Initial State (Block 21233000) ---");
 console.log("Reserve0 (USDC):", reserve0_initial);
 console.log("Reserve1 (WETH):", reserve1_initial);
 console.log("Timestamp:", ts_initial);
 console.log("price1CumulativeLast:", price0Cumulative_initial);

 // Calculate real ETH price
 uint256 realPriceUSD_initial = (uint256(reserve0_initial) * 1e18) / uint256(reserve1_initial)
 console.log("REAL ETH price: $", realPriceUSD_initial / 1e18);

 // Create oracle with invert=false (reads price1 = ETH price in USDC)
 UniswapV2Caller oracleBuggy = new UniswapV2Caller(USDC_ETH_POOL, 60, true);
 console.log("Oracle deployed at:", address(oracleBuggy));
 console.log("Oracle initialized with timestampLast:", oracleBuggy.timestampLast());

 // Now we need to advance to a block where pool was updated
 // We'll roll forward on the SAME fork to a later block
 console.log("\n=== Advancing to Later Block ===");
 vm.rollFork(21233010); // Roll forward 10 blocks (~120 seconds)

 // Get state at new block
 (uint112 reserve0_later, uint112 reserve1_later, uint32 ts_later) = pool.getReserves();

The test passes, confirming that the UniswapV2Caller oracle suffers from a severe decimal-normalization
bug. In this PoC, 1 USDC should have resolved to approximately 0.0003246 ETH , but instead the oracle
reports an impossible price of 324408010.060800616278278536 ETH per USDC.

 uint256 price0Cumulative_later = pool.price0CumulativeLast();

 console.log("\n--- Later State (Block 21233010) ---");
 console.log("Reserve0 (USDC):", reserve0_later);
 console.log("Reserve1 (WETH):", reserve1_later);
 console.log("Timestamp:", ts_later);
 console.log("price1CumulativeLast:", price0Cumulative_later);
 console.log("Time elapsed:", uint256(ts_later) - uint256(ts_initial), "seconds");
 console.log("Price cumulative change:", price0Cumulative_later - price0Cumulative_initial);

 // Calculate real ETH price
 uint256 realPriceUSD_later = (uint256(reserve0_later) * 1e18) / uint256(reserve1_later);
 console.log("REAL ETH price: $", realPriceUSD_later / 1e18);

 // Check if enough time passed
 if (ts_later <= ts_initial) {
 console.log("\n!!! WARNING: Pool timestamp didn't advance !!!");
 console.log("This means no swaps occurred between these blocks");
 console.log("Try different block numbers or use vm.warp");
 revert("Pool timestamp didn't advance");
 }

 if ((ts_later - ts_initial) < 60) {
 console.log("\n!!! WARNING: Less than 60 seconds elapsed !!!");
 console.log("Oracle requires minWindow of 60 seconds");
 revert("Insufficient time elapsed");
 }

 console.log("\n=== Updating Oracle ===");

 // Trigger update
 oracleBuggy.update();

 console.log("Oracle lastPriceX18:", oracleBuggy.lastPriceX18());
 console.log("Oracle timestampLast:", oracleBuggy.timestampLast());
 console.log("Oracle priceCumulativeLast:", oracleBuggy.priceCumulativeLast());

 // Get oracle price
 (bool success, uint256 oraclePrice, uint256 oracleTimestamp,) = oracleBuggy.getLastValue();

 console.log("\n=== ORACLE OUTPUT (BUGGY) ===");
 console.log("Success:", success);
 console.log("Oracle timestamp:", oracleTimestamp);
 console.log("Oracle price (raw):", oraclePrice);

 require(success, "Oracle should return success");
 require(oraclePrice > 0, "Oracle price should be non-zero");

 // Assertions
 assertTrue(success, "Oracle should return success");
 assertTrue(oraclePrice > 0, "Oracle should return non-zero price");

 }

}

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:C/I:H/D:H/Y:N (10.0)

Recommendation
It is recommended to apply proper token decimal normalization for V2 calculations before scaling to
1e18, ensuring the final price reflects correct 18-decimal precision regardless of pool decimals.

Remediation Comment

SOLVED: The Liquid Loans team solved the issue by applying token decimal normalization for V2
calculations.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:C/I:H/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:C/I:H/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:C/I:H/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:C/I:H/D:H/Y:N

Remediation Hash
https://github.com/Liquid-Loans-Official/oracle-callers/pull/30/commits/ffd8f911c3a117c86052b123c7
bb7b7ac43fa9cd

7. 2 U S E O F O U T DAT E D S O L I D I T Y V E RS I O N

// LOW

Description
The contract uses an outdated Solidity compiler version:

Solidity 0.6.x is more than four years old and lacks numerous safety features, compiler optimizations,
and built-in protections introduced in later versions (especially 0.8.x). Using such an old compiler
introduces several risks:

1. Missing Overflow/Underflow Protection
Versions prior to 0.8.0 do not include automatic arithmetic safety checks, causing potential silent
overflows unless manually handled.
2. Missing language improvements
Features like custom errors, immutable variables, receive/fallback improvements, safer ABI encoding,
and memory optimizations are unavailable.
3. Potential incompatibility with modern dependencies
Most modern libraries (OpenZeppelin etc.) have dropped support for Solidity <0.7, increasing
maintenance burden.

Because this contract interacts with token transfers and Merkle-based claims, using an older compiler
increases the risks of undefined behavior and developer mistakes.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (2.5)

Recommendation
Upgrade the contract to Solidity ^0.8.20 .

Remediation Comment

RISK ACCEPTED: The Liquid Loans team accepted the risk of this finding.

Remediation Hash
https://github.com/Liquid-Loans-Official/monorepo/tree/audit

pragma solidity 0.6.11;

Copy Code

https://github.com/Liquid-Loans-Official/oracle-callers/pull/30/commits/ffd8f911c3a117c86052b123c7bb7b7ac43fa9cd
https://github.com/Liquid-Loans-Official/oracle-callers/pull/30/commits/ffd8f911c3a117c86052b123c7bb7b7ac43fa9cd
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://github.com/Liquid-Loans-Official/monorepo/tree/audit

7. 3 U S E O F O U T DAT E D O P E N Z E P P E L I N L I B R A R I ES

// INFORMATIONAL

Description

The contract imports OpenZeppelin contracts from an older v3.4-era codebase:

These versions were designed for Solidity 0.6.x, lack many modern safety improvements, and are no
longer maintained. Relying on outdated versions introduces several risks:

1. Missing modern security patches
2. Outdated access control (Ownable)
3. Older MerkleProof implementation
4. Legacy SafeERC20 behavior
5. Older ReentrancyGuard
6. Incompatibility with modern toolchains

Using these older dependencies increases the likelihood of subtle bugs, reduces interoperability, and
limits auditability.

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (1.7)

Recommendation
Upgrade all OpenZeppelin dependencies to the latest stable version.

Remediation Comment

ACKNOWLEDGED: The Liquid Loans team acknowledged this finding.

Remediation Hash
https://github.com/Liquid-Loans-Official/monorepo/tree/audit

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

import "../Dependencies/Ownable.sol";
import "../Dependencies/MerkleProof.sol";
import "../Dependencies/SafeERC20.sol";
import "../Dependencies/ReentrancyGuard.sol";

4
5
6
7

Copy Code

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://github.com/Liquid-Loans-Official/monorepo/tree/audit

