/| Security Assessment 11.18.2025 - 11.21.2025

Decentralized

Borrowing) Protocol
Liquid Loans

=/\LL_BLIRIN

Decentralized Borrowing Protocol - Liquid Loans

Prepared by: gl HALBORN
Last Updated 12/12/2025

Date of Engagement: November 18th, 2025 - November 21st, 2025

Summary

100°% O OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALLFINDINGS CRITICAL HIGH MEDIUM LOW INFORMATIONAL
3 1 o o 1 1

TABLE OF CONTENTS

. Introduction

. Assessment summary

. Test approach and methodology

. Risk methodology

. Scope

. Assessment summary & findings overview
. Findings & Tech Details

N 0O o B 0N

7.1 Incorrect decimal normalization in uniswap v2 oracle price calculations leading to price
inflation

7.2 Use of outdated solidity version
7.3 Use of outdated openzeppelin libraries

1. INTRODUCTION

Liquid Loans engaged Halborn to conduct a security assessment on their smart contracts beginning
on November 18th, 2025 and ending on November 20th, 2025. The security assessment was scoped to
the smart contracts provided in the Github repository, provided to the Halborn team. Commit hash and
further details can be found in the Scope section of this report.

The reviewed contracts LoanAirdrop and Communitylssuance contracts work together to distribute LOAN
tokens to eligible users through a merkle-based airdrop and protocol-driven issuance schedule. The
LoanAirdrop contract validates user allocations via Merkle proofs and releases tokens over predefined
monthly claim windows, while the Communitylssuance contract mints and streams LOAN rewards to
stability pool participants based on protocol conditions. These components rely on price-oracle caller
contracts, which fetch TWAP prices from Uniswap pools to support accurate valuation and reward
calculations, ensuring that token distribution and issuance remain aligned with real-time market
conditions.

2. ASSESSMENT SUMMARY

Halborn was provided with 3 days for this engagement and assigned a full-time security engineer to
assess the security of the smart contracts in scope. The assigned engineer possess deep expertise in
blockchain and smart contract security, including hands-on experience with multiple blockchain
protocols.

The objective of this assessment is to:

« Identify potential security issues within the Liquid Loans protocol smart contracts.
« Ensure that smart contract of Liquid Loans protocol functions operate as intended.

In summary, Halborn identified several areas for improvement to reduce the likelihood and impact of
security risks, which were partially addressed by the Liquid Loans team.The main ones were:

« Update the inversion logic to correctly rescale based on token decimals.
« Upgrade the contract to Newer Solidity version.
« Upgrade all OpenZeppelin dependencies to the latest stable version.

3. TEST APPROACH AND METHODOLOGY

Halborn performed a combination of manual review of the code and automated security testing to
balance efficiency, timeliness, practicality, and accuracy in regard to the scope of the smart contract
assessment. While manual testing is recommended to uncover flaws in logic, process, and
implementation; automated testing techniques help enhance coverage of smart contracts and can
quickly identify items that do not follow security best practices.

The following phases and associated tools were used throughout the term of the assessment:

» Research into the architecture and purpose of the Liquid Loans protocol.

« Manual code review and walkthrough of the Liquid Loans in-scope contracts.

« Manual assessment of critical Solidity variables and functions to identify potential vulnerability
classes.

« Manual testing using custom scripts.

« Static Analysis of security for scoped contract, and imported functions. (Slither).

« Local deployment and testing with (Foundry, Remix IDE).

4. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity

Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means

by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

41 EXPLOITABILITY

ATTACK ORIGIN [AO).

Captures whether the attack requires compromising a specific account.
ATTACK COST (AC).

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

ATTACK COMPLEXITY (AX]):

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory

challenges.

METRICS:

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

.. Arbitrary (AO:A) 1

Attack Origin (AO) Specific (AO:S) 0.2
Low (AC:L) 1

Attack Cost (AC) Medium (AC:M) 0.67

High (AC:H) 0.33

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

Low (AX:L) 1
Attack Complexity (AX) Medium (AX:M) 0.67
High (AX:H) 0.33

Exploitability F is calculated using the following formula:

E:I_[me

4.2 IMPACT
CONFIDENTIALITY (C):

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

INTEGRITY (I):

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVAILABILITY ([(A):

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

DEPOSIT (D):

Measures the impact to the deposits made to the contract by either users or owners.
YIELD (Y):

Measures the impact to the yield generated by the contract for either users or owners.

METRICS.:
IMPACT METRIC (M) METRIC VALUE NUMERICAL VALUE
None (C:N) 0
Low (C:L) 0.25
Confidentiality (C) Medium (C:M) 0.5
High (C:H) 0.75
Critical (C:C) 1

IMPACT METRIC (M7) METRIC VALUE NUMERICAL VALUE
None (I:N) 0
Low (I:L) 0.25
Integrity (1) Medium (I:M) 0.5
High (I:H) 0.75
Critical (I:C) 1
None (A:N) 0
Low (A:L) 0.25
Availability (A) Medium (A:M) 0.5
High (A:H) 0.75
Critical (A:C) 1
None (D:N) 0
Low (D:L) 0.25
Deposit (D) Medium (D:M) 0.5
High (D:H) 0.75
Critical (D:C) 1
None (Y:N) 0]
Low (Y:L) 0.25
Yield (Y) Medium (Y:M) 0.5
High (Y:H) 0.75
Critical (Y:C) 1

Impact I is calculated using the following formula:

> my — max(my)
4

I = max(my) +

4.3 SEVERITY COEFFICIENT
REVERSIBILITY [R):

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

SCOPE (S):

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

METRICS:
SEVERITY COEFFICIENT (C) COEFFICIENT VALUE NUMERICAL VALUE
None (R:N) 1
Reversibility () Partial (R:P) 0.5
Full (R:F) 0.2
3 (Changed (S:C) 1.25
cope (8) Unchanged (S:U) 1

Severity Coefficient C'is obtained by the following product:

The Vulnerability Severity Score S is obtained by:

The score is rounded up to 1 decimal places.

C =rs

S = min(10, EIC % 10)

SEVERITY

SCORE VALUE RANGE

45-6.9

REPOSITORIES

(a) Repository: monorepo
(b) Assessed Commit ID: 765ec6Bd

(c) Items in scope:

« packages/contracts/contracts/LOAN/LockupAirdrop.sol
« packages/contracts/contracts/LOAN/Communitylssuance.sol

Out-of-Scope: Third party dependencies and economic attacks.

(a) Repository: oracle-callers
(b) Assessed Commit ID: 28acf2b

(c) Items in scope:

« contracts/UniswapV2Caller.sol

« contracts/UniswapV3Caller.sol

« contracts/SecondaryCallerUpdateable.sol

« contracts/libraries/TickMathWrapper.sol

« contracts/interfaces/IERC20Metadata.sol

« contracts/interfaces/IPriceFeedSecondaryUpdateable.sol
« contracts/interfaces/ITickMathWrapper.sol

« contracts/interfaces/IUniswapV2Pool.sol

« contracts/interfaces/IUniswapV3Pool.sol

Out-of-Scope: Third party dependencies and economic attacks.

REMEDIATION COMMIT ID:

 https://github.com/Liquid-Loans-Official/oracle-callers/pull/30/commits/ffd8f911c3a117c86
052b123c7bb7b7ac43fa9cd
« https://github.com/Liquid-Loans-Official/monorepo/tree/audit

Out-of-Scope: New features/implementations after the remediation commit IDs.

6. ASSESSMENT SUMMARY & FINDINGS OVERVIEW

CRITICAL HIGH MEDIUM LOW

https://github.com/Liquid-Loans-Official/monorepo
https://github.com/Liquid-Loans-Official/monorepo/commit/765ec6d690bbac83e0d083e97d7a72870000522d/
https://github.com/Liquid-Loans-Official/oracle-callers/
https://github.com/Liquid-Loans-Official/oracle-callers/commit/28acf2bc6b6252b5fc4f3706fd6025533c857b03
https://github.com/Liquid-Loans-Official/oracle-callers/pull/30/commits/ffd8f911c3a117c86052b123c7bb7b7ac43fa9cd
https://github.com/Liquid-Loans-Official/oracle-callers/pull/30/commits/ffd8f911c3a117c86052b123c7bb7b7ac43fa9cd
https://github.com/Liquid-Loans-Official/monorepo/tree/audit

INFORMATIONAL
1

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

INCORRECT DECIMAL NORMALIZATION IN UNISWAP
V2 ORACLE PRICE CALCULATIONS LEADING TO PRICE CRITICAL SOLVED - 11/24/2025
INFLATION

RISK ACCEPTED -

USE OF OUTDATED SOLIDITY VERSION
11/24/2025

ACKNOWLEDGED -

USE OF OUTDATED OPENZEPPELIN LIBRARIES INFORMATIONAL
11/24/2025

7. FINDINGS 8 TECH DETAILS

7.1 INCORRECT DECIMAL NORMALIZATION IN UNISWAP V2
ORACLE PRICE CALCULATIONS LEADING TO PRICE
INFLATION

/] CRITICAL

Description

In the UniswapV2Caller contract, the update() function normalizes prices as if both tokens always
use 18 decimals. This leads to severe inflation when pools involve tokens with fewer decimals (e.g., USDC
with 6 decimals). The root vulnerability is missing decimal normalization before scaling to 1e18, causing
~1e12 over-scaling in ETH/USD pricing.

In UniswapV2Caller :
The V2 oracle takes Uniswap’s UQ112x112 cumulative prices and directly converts them into 1e18
precision:

[D)Copy Code
44 | lastPriceX18 = (avglQ112x112 * 1el8) >> 112;

This implicitly assumes both tokens use 18 decimals. In a USDC/ETH pool (tokenO = USDC, 6 decimals),
the conversion multiplies the price by 1e12, resulting in values such as ~324,408,010 ETH per USDC
instead of the expected ~0.0003 ETH per USDC. This breaks any protocol consuming ETH/USD or USD-
denominated feeds, leading to corrupted collateralization logic, incorrect liquidations, and oracle-driven
insolvency risk.

Due to this:

o Liquity-style oracle consumers receive ETH prices inflated by 1e12.

« Collateralization ratios become meaningless.

« Liquidations may trigger incorrectly.

« Lending systems become insolvent or reject valid operations.

« Any economic logic depending on accurate ETH/USD price becomes corrupted.

Proof of Concept

Place the UniswapV2CallerPoC.t.sol file inside the foundry/test directory. This proof-of-concept
highlights a decimal-inversion bug in the UniswapV2Caller contract: when the oracle is configured
with invert = true, the TWAP returned from Uniswap V2 is inverted but not re-scaled to the correct
decimal format, causing a silent mispricing (USDC decimals ignored). By forking Ethereum mainnet and
comparing the real ETH price against the oracle’s output, the test demonstrates that the oracle reports a

price that is off by decimals, proving that inverted TWAP values must be normalized to token decimals
before converting from UQ112x112 to 1e18 format.

// SPDX-License-Identifier: MIT
pragma solidity A0.8.24;

import "forge-std/Test.sol";
import "forge-std/console.sol";

interface IERC20 {

[0 Copy Code

function decimals() external view returns (uint8);
function balanceOf(address) external view returns (uint256);

}

interface IUniswapV2Pool {
function token@() external view
function tokenl() external view
function getReserves() external
function price@Cumulativelast()
function pricelCumulativelLast()

}

returns (address);

returns (address);

view returns (uintll2 reserve@, uintll2 reservel, uint32 blockTim
external view returns (uint256);

external view returns (uint256);

interface IPriceFeedSecondaryUpdateable {
function getlLastValue() external view returns (bool success, uint256 value, uint256 timestamp, by
function getCurrentValue() external returns (bool success, uint256 value, uint256 timestamp, byte

}

contract UniswapV2Caller is IPriceFeedSecondaryUpdateable {

IUniswapV2Pool public immutable
bool public immutable invert;

pair;

uint32 public immutable minWindow;

uint32 public timestamplast;
uint256 public lastPriceX18;

uint256 public priceCumulativelast;

constructor(address _pair, uint32 _minWindow, bool _invert) {
require(_pair != address(@), "zero pair");
require(_minWindow > @, "bad window");

pair = IUniswapV2Pool(_pair);

invert = _invert;
minWindow = _minWindow;

// initialize snapshot

(, , uint32 ts) = pair.getReserves();

timestamplLast = ts;

priceCumulativelLast = invert ? pair.price@CumulativeLast() : pair.pricelCumulativelLast();

}

function update() public {

uint256 cumulativeNow = invert ? pair.price@CumulativelLast() : pair.pricelCumulativelLast();
(, , uint32 ts) = pair.getReserves();

uint32 elapsed = ts - timestamplast;

// Enforce minimum window
if (elapsed < minWindow) {

// Not enough time: just return last stored price

return;

}

// BUG: No decimal normalization!
uint256 avguQ112x112 = (cumulativeNow - priceCumulativelast) / elapsed;
lastPriceX18 = (avglQ1l12x112 * 1el8) >> 112;

priceCumulativeLast = cumulativeNow;

timestamplLast = ts;

}

function getlLastValue()
public

view
override
returns (bool success, uint256 value, uint256 timestamp, bytes32 data)

{

if (lastPriceX18 ==

return (false, 0, 0, bytes32(0));

ks

return (true, lastPriceX18, timestamplast, bytes32(0));
3
function getCurrentValue()

external

override

returns (bool success, uint256 value, uint256 timestamp, bytes32 data)
{

update();

return getlLastValue(Q);
ks

}

contract UniswapV2CallerPoC is Test {
// Real Ethereum mainnet addresses
address constant USDC_ETH_POOL = @xB4e16d0168e52d35CaCD2c6185b44281Ec28C9Dc;
address constant USDC = 0xA@b86991c6218b36c1d19D4a2e9EbACE3606eB48;
address constant WETH = 0xC02aaA39b223FE8DOAQe5C4F27eAD9083C756(Cc2;

IUniswapV2Pool public pool;

function setUp() public {
console.log("=== Pool Configuration ===");
console.log("Pool:", USDC_ETH_POOL);
console.log("USDC:", USDC);
console.log("WETH:", WETH);

}

function testlDecimalBugDemonstration() public {
console.log("\n=== DEMONSTRATING DECIMAL BUG ON REAL POOL ===\n");

// Fork at a specific block
vm.createSelectFork("https://eth-mainnet.g.alchemy.com/v2/TIJYxx1JAsVXGQS15KRdIaTIhtMOQiWzF",

pool = IUniswapV2Pool(USDC_ETH_POOL);
// Verify token order

address token@ = pool.tokend();
address tokenl = pool.tokenl();

console.log("Token@:", token@d, "(CUSDC)");
console.log("Tokenl:", tokenl, "(WETH)");
console.log("USDC decimals:", IERC2QCUSDC).decimals());
console.log("WETH decimals:", IERC2QCWETH).decimals());

// Get initial state
(uintl12 reserve@_initial, uintll2 reservel_initial, uint32 ts_initial) = pool.getReserves();
uint256 price@Cumulative_initial = pool.price@Cumulativelast();

console.log("\n--- Initial State (Block 21233000) ---");
console.log("Reserved (USDC):", reserve@_initial);
console.log("Reservel (WETH):", reservel_initial);
console.log("Timestamp:", ts_initial);
console.log("pricelCumulativelLast:", price@Cumulative_initial);

// Calculate real ETH price
uint256 realPriceUSD_initial = (uint256(reserve@_initial) * 1el8) / uint256(reservel_initial)
console.log("REAL ETH price: $", realPriceUSD_initial / 1el18);

// Create oracle with invert=false (reads pricel = ETH price in USDC)
UniswapV2Caller oracleBuggy = new UniswapV2Caller(USDC_ETH_POOL, 60, true);
console.log("Oracle deployed at:", address(oracleBuggy));

console.log("Oracle initialized with timestamplLast:", oracleBuggy.timestamplLast());

// Now we need to advance to a block where pool was updated

// We'll roll forward on the SAME fork to a later block
console.log("\n=== Advancing to Later Block ==='
vm.rollFork(21233010); // Roll forward 10 blocks (120 seconds)

// Get state at new block
(uintll2 reserve@_later, uintll? reservel_later, uint32 ts_later) = pool.getReserves();

uint256 price@Cumulative_later = pool.price@CumulativelLast();

console.log("\n--- Later State (Block 21233010) ---");

console.log("Reserve@ (USDC):", reserve@_later);

console.log("Reservel (WETH):", reservel_later);

console.log("Timestamp:", ts_later);

console.log("pricelCumulativelLast:", price@Cumulative_later);

console.log("Time elapsed:", uint256(ts_later) - uint256(ts_initial), "seconds");
console.log("Price cumulative change:", price@Cumulative_later - price@Cumulative_initial);

// Calculate real ETH price
uint256 realPriceUSD_later = (uint256(reserve@_later) * 1el8) / uint256(reservel_later);
console.log("REAL ETH price: $", realPriceUSD_later / 1el8);

// Check if enough time passed

if (ts_later <= ts_initial) {
console.log("\n!!! WARNING: Pool timestamp didn't advance !!!");
console.log("This means no swaps occurred between these blocks");
console.log("Try different block numbers or use vm.warp");
revert("Pool timestamp didn't advance™);

3

if ((ts_later - ts_initial) < 60) {
console.log("\n!!! WARNING: Less than 60 seconds elapsed !!!");
console.log("Oracle requires minWindow of 6@ seconds™);
revert("Insufficient time elapsed");

3

console.log("\n=== Updating Oracle ===");

// Trigger update
oracleBuggy.update();

console.log("Oracle lastPriceX18:", oracleBuggy.lastPriceX18());
console.log("Oracle timestamplLast:", oracleBuggy.timestampLast());
console.log("Oracle priceCumulativelLast:", oracleBuggy.priceCumulativelLast());

// Get oracle price
(bool success, uint256 oraclePrice, uint256 oracleTimestamp,) = oracleBuggy.getLastValue();

console.log("\n=== ORACLE OUTPUT (BUGGY) ===");
console.log("Success:", success);
console.log("Oracle timestamp:", oracleTimestamp);
console.log("Oracle price (raw):", oraclePrice);

require(success, "Oracle should return success");
require(oraclePrice > 0@, "Oracle price should be non-zero");

// Assertions
assertTrue(success, "Oracle should return success");
assertTrue(oraclePrice > @, "Oracle should return non-zero price");

The test passes, confirming that the UniswapV2Caller oracle suffers from a severe decimal-normalization
bug. In this PoC, 1 USDC should have resolved to approximately 0.0003246 ETH, but instead the oracle
reports an impossible price of 324408010.060800616278278536 ETH per USDC.

Ran 1 test for test/LastFinalP0C2.t.sol:UniswapV2CallerPoC
[PASS] testlDecimalBugDemonstration() (gas: 670596)
Logs:

=== Pool Configuration ===

Pool: @xB4el6d@168e52d35CaCD2c6185b44281Ec28CADc

USDC: 0xA@b86991c6218b36c1d19D4a2e9EbACE3606eB48

WETH: 0xC02aaA39b223FE8DOAQe5C4F27eAD9083C756Cc2

=== DEMONSTRATING DECIMAL BUG ON REAL POOL ===

Token@: 0xA0b86991c6218b36c1d19D4a2e9EbACE3606eB48 (USDC)
Tokenl: 0xC02aaA39b223FE8DOAAe5C4F27eAD9083C756Cc2 (WETH)
USDC decimals: 6
WETH decimals: 18

-— Initial State (Block 21233000) -—
Reserve@ (USDC): 43689084181807
Reservel (WETH): 14172589575625284352000
Timestamp: 1732154591
pricelCumulativelLast: 637685580021696650510053863592321324938315425942808
REAL ETH price: $ ©
Oracle deployed at: 0x5615dEB798BB3E4dFa0139dFalb3D433Cc23b72f
Oracle initialized with timestampLast: 1732154591

=== Advancing to Later Block ===

-— Later State (Block 21233010) ——-
Reserve@ (USDC): 43683088249308
Reservel (WETH): 14174541048609960395392
Timestamp: 1732154687
pricelCumulativelLast: 637685741726275036644114237667651174478053056713520
Time elapsed: 96 seconds
Price cumulative change: 161704578386134060374075329849539737630770712
REAL ETH price: $ 0

=== Updating Oracle ===
Oracle lastPriceX18: 324408010060800616278278536
Oracle timestamplLast: 1732154687
Oracle priceCumulativelast: 637685741726275036644114237667651174478053056713520

=== QRACLE OUTPUT (BUGGY) ===
Success: true
Oracle timestamp: 1732154687
Oracle price (raw): 324408010060800616278278536

Suite result: ok. 1 passed; 0 failed; @ skipped; finished in 742.05ms (738.82ms CPU time)

BVSS
AO:A/AC:L/AX:L/R:N/S:U/C:N/A:C/I:H/D:H/Y:N (10.0)

Recommendation

It is recommended to apply proper token decimal normalization for V2 calculations before scaling to
1e18, ensuring the final price reflects correct 18-decimal precision regardless of pool decimals.

Remediation Comment

SOLVED: The Liquid Loans team solved the issue by applying token decimal normalization for V2
calculations.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:C/I:H/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:C/I:H/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:C/I:H/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:C/I:H/D:H/Y:N

Remediation Hash

https://github.com/Liquid-Loans-Official/oracle-callers/pull/30/commits/ffd8f911¢c3a117¢86052b123c¢7
bb7b7ac43fa9cd

7.2 USE OF OUTDATED SOLIDITY VERSION
/] LOW

Description
The contract uses an outdated Solidity compiler version:

[D)Copy Code
pragma solidity 0.6.11;

Solidity 0.6.x is more than four years old and lacks numerous safety features, compiler optimizations,
and built-in protections introduced in later versions (especially 0.8.x). Using such an old compiler
introduces several risks:

1. Missing Overflow/Underflow Protection

Versions prior to 0.8.0 do not include automatic arithmetic safety checks, causing potential silent
overflows unless manually handled.

2. Missing language improvements

Features like custom errors, immutable variables, receive/fallback improvements, safer ABI encoding,
and memory optimizations are unavailable.

3. Potential incompatibility with modern dependencies

Most modern libraries (OpenZeppelin etc.) have dropped support for Solidity <0.7, increasing
maintenance burden.

Because this contract interacts with token transfers and Merkle-based claims, using an older compiler
increases the risks of undefined behavior and developer mistakes.

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (2.5)

Recommendation

Upgrade the contract to Solidity ~0.8.20.

Remediation Comment

RISK ACCEPTED: The Liquid Loans team accepted the risk of this finding.

Remediation Hash

https://github.com/Liquid-Loans-0Official/monorepo/tree/audit

https://github.com/Liquid-Loans-Official/oracle-callers/pull/30/commits/ffd8f911c3a117c86052b123c7bb7b7ac43fa9cd
https://github.com/Liquid-Loans-Official/oracle-callers/pull/30/commits/ffd8f911c3a117c86052b123c7bb7b7ac43fa9cd
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://github.com/Liquid-Loans-Official/monorepo/tree/audit

7.3 USE OF OUTDATED OPENZEPPELIN LIBRARIES
// INFORMATIONAL

Description
The contract imports OpenZeppelin contracts from an older v3.4-era codebase:

[C)Copy Code

import "../Dependencies/Ownable.sol";

import "../Dependencies/MerkleProof.sol";
import "../Dependencies/SafeERC20.sol";
import "../Dependencies/ReentrancyGuard.sol";

N O Ul

These versions were designed for Solidity 0.6.x, lack many modern safety improvements, and are no
longer maintained. Relying on outdated versions introduces several risks:

1. Missing modern security patches

2. Outdated access control (Ownable)

3. Older MerkleProof implementation

4. Legacy SafeERC20 behavior

5. Older ReentrancyGuard

6. Incompatibility with modern toolchains

Using these older dependencies increases the likelihood of subtle bugs, reduces interoperability, and
limits auditability.

BVSS
AQ:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (1.7)

Recommendation

Upgrade all OpenZeppelin dependencies to the latest stable version.

Remediation Comment

ACKNOWLEDGED: The Liquid Loans team acknowledged this finding.

Remediation Hash

https://github.com/Liquid-Loans-Official/monorepo/tree/audit

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://github.com/Liquid-Loans-Official/monorepo/tree/audit

